Cystic Fibrosis Pulmonary Guidelines:

Chronic Medications for Maintenance of Lung Health

Patrick A. Flume, M.D.¹, Brian P. O’Sullivan, M.D.², Karen A. Robinson, M.Sc.³, Christopher H. Goss, M.D., M.Sc.⁴, Peter J. Mogayzel, Jr., M.D., Ph.D.⁵, Donna Beth Willey-Courand, M.D.⁶, Janet Bujan, R.N.⁷, Jonathan Finder, M.D.⁸, Mary Lester, R.R.T.⁹, Lynne Quittell, M.D.¹⁰, Randall Rosenblatt, M.D.¹¹, Robert L. Vender, M.D.¹², Leslie Hazle, M.S., R.N., C.P.N.¹³, Kathy Sabadosa, M.P.H.¹⁴, Bruce Marshall, M.D.¹³

Departments of Medicine and Pediatrics, Medical University of South Carolina, Charleston, SC¹, Department of Pediatrics, University of Massachusetts Medical School, Worcester, MA², Department of Medicine, The Johns Hopkins Medical Institutions, Baltimore, MD³, Department of Medicine, University of Washington, Seattle, WA⁴, Department of Pediatrics, The Johns Hopkins Medical Institutions, Baltimore, MD⁵, Department of Pediatrics, University of Texas Health Science Center at San Antonio, San Antonio, TX⁶, Department of Nursing, Texas Children’s Hospital, Houston, TX⁷, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA⁸, Department of Respiratory Therapy, Medical University of South Carolina, Charleston, SC⁹, Department of Pediatrics, Columbia University, New York, NY¹⁰, Department of Medicine, University of Texas Southwestern, Dallas, TX¹¹, Department of Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA¹², Cystic Fibrosis Foundation, Bethesda, MD¹³, Dartmouth-Hitchcock Medical Center, Lebanon, NH¹⁴

No reprints

Corresponding author: Patrick A. Flume, M.D. Medical University of South Carolina 96 Jonathan Lucas Street, 812-CSB Charleston, SC 29425 Office: (843) 792-9219 Fax: (843) 792-0732 flumepa@musc.edu

Project supported by the Cystic Fibrosis Foundation

Running title: Cystic Fibrosis Pulmonary Guidelines

Subject Category: 102 (cystic fibrosis in children)

Word count, text: 7,760

This article has an online data supplement, which is accessible from this issue’s table of content online at www.atsjournals.org.

Copyright (C) 2007 by the American Thoracic Society.
At A Glance Commentary: Optimal management of the pulmonary complications of cystic fibrosis can lengthen and improve the lives of individuals with this disease. This manuscript represents the efforts by a committee formed by the Cystic Fibrosis Foundation to analyze studies of the efficacy and safety of commonly used therapies and make recommendations for their use based on the available data.
ABSTRACT

Rationale: Cystic fibrosis is a recessive genetic disease characterized by dehydration of the airway surface liquid and impaired mucociliary clearance. As a result, individuals with the disease have difficulty clearing pathogens from the lung and experience chronic pulmonary infections and inflammation. Death is usually a result of respiratory failure. Newly introduced therapies and aggressive management of the lung disease have resulted in great improvements to length and quality of life, with the result that the median expected survival age has reached 36 years. However, as the number of treatments expands, the medical regimen becomes increasingly burdensome in time, money, and health resources. Hence, it is important that treatments should be recommended on the basis of available evidence of efficacy and safety.

Objectives: The Cystic Fibrosis Foundation therefore established a committee to examine the clinical evidence for each therapy and provide guidance for the prescription of these therapies.

Methods: The committee members developed and refined a series of questions related to drug therapies used in the maintenance of pulmonary function. We addressed the questions in one of three ways, based on available evidence: (i) commissioned systematic review (ii) modified systematic review or (iii) summary of existing Cochrane reviews.

Conclusions: It is hoped that the guidelines provided in this manuscript will facilitate the appropriate application of these treatments to improve and extend the lives of all individuals with cystic fibrosis.

Word count: 228
Key words: antibiotics; anti-inflammatory agents; bronchodilators; mucolytics; saline solution, hypertonic
INTRODUCTION

Cystic fibrosis (CF) is a complex multi-organ disease in which lung disease accounts for nearly 85% of the mortality (1). Lung destruction is caused by obstruction of the airways due to dehydrated, thickened secretions, resultant endobronchial infection, and an exaggerated inflammatory response leading to development of bronchiectasis and progressive obstructive airways disease. Physicians treating patients with CF are faced with a growing number of treatment options for the maintenance of lung health for children and adults with CF. Currently, the CF Foundation has published consensus guidelines for only 2 of these therapies, aerosolized tobramycin (2) and recombinant human deoxyribonuclease (dornase alfa) (3), and additional studies have been published since the release of those guidelines. To provide guidance to the physician who must choose from an ever-expanding arsenal of treatments for chronic CF lung disease, the CF Foundation established the Pulmonary Therapies Committee. This document represents the committee’s recommendations, based on available evidence, for the use of medications intended to maintain lung health. The guidelines are designed for general use in most patients, but may need to be adapted to meet individual needs as determined by the patient’s health care provider. In addition, because of the limited number of studies available involving very young children, unless otherwise noted, recommendations are intended for individuals at least 6 years of age.

METHODS

A preliminary meeting was held in October 2005 to initiate the process of identifying and prioritizing topics to be covered in these guidelines. The committee was
composed of 15 members, all from the United States, representing internal medicine, pediatrics, nursing, respiratory therapy, systematic review procedures, and the CF Foundation. Each member of the committee was involved in developing the recommendations and reviewed and commented on the final version of the guidelines. The committee members developed and refined a series of questions related to drug therapies used in the maintenance of pulmonary function. We addressed the questions in one of three ways, based on available evidence: (i) commissioned systematic review (ii) modified systematic review or (iii) summary of existing Cochrane reviews. Details on these methods are provided in the online supplement.

Members of the committee were provided with summaries of the evidence. Sub-committees, formed to review the evidence for each specific treatment, drafted recommendations. Their assessment of the evidence and draft statements were then presented to the full committee for discussion. For each treatment under question, the body of evidence was evaluated by the full committee and recommendations made using the U.S. Preventive Services Task Force grading scheme (4) (see Table 1). A draft of the recommendations was presented in November 2006 at the North American Cystic Fibrosis Conference and the committee solicited public commentary for one month following the presentation. This input was considered by the committee in the preparation of these guidelines.

RESULTS

Assessment of Evidence

(i) Systematic reviews of original research
A total of 2,670 unique citations were identified through the search process. Fifty-seven studies, published between 1983 and 2006, were deemed eligible for inclusion in this review (Figure 1).

(ii) Modified systematic reviews

A total of 416 unique citations were identified. Seventeen studies, published between 1983 and 2006, were deemed eligible for inclusion.

(iii) Existing Cochrane systematic reviews

We identified 9 Cochrane reviews that addressed the effectiveness of aerosolized antibiotics, dornase alfa, hypertonic saline, oral corticosteroids, inhaled corticosteroids, oral non-steroidal anti-inflammatory drugs, macrolide antibiotics, inhaled bronchodilators (including β-agonists and anticholinergic medications), and oral anti-Staphylococcal antibiotics.

A summary of the number and type of studies and total number of patients involved in each trial category is shown in Table 2. The committee’s assessment of the quality of evidence, the estimate of net benefit (benefits minus harms), and grade of the recommendation discussed below are also shown in this table.

Recommendations

Aerosolized antibiotics

The most common airway pathogen in patients with CF is *Pseudomonas aeruginosa*. Because chronic colonization of the airways with this bacterium is associated with a more rapid decline in lung function (5), aerosolized antibiotics have been advocated both for eradication of initial infection and for suppression of the chronic infection. The present systematic review of evidence was focused on the latter.
Recommendations are stratified based upon the severity of lung disease, defined by FEV$_1$ percent of predicted as follows: normal, > 90% predicted; mildly impaired, 70-89% predicted; moderately impaired, 40-69% predicted; and severely impaired, < 40% predicted.

Tobramycin for moderate to severe disease

A systematic review of original research identified 6 eligible trials assessing the use of aerosolized tobramycin compared to placebo or standard therapy in patients with moderate to severe airway disease and established *P. aeruginosa* infection (Table 2). There were 679 participants in these studies with the largest study enrolling 520 subjects (6). Three studies (n = 619 patients) reported statistically significant improvement in FEV$_1$ for those taking tobramycin compared to placebo or standard treatment, with a net benefit to lung function ranging from 7.8 to 12% (6-8). One study (n = 22) reported no significant effects on FEV$_1$ (as a percent of predicted) but the actual values were not provided (9). There were 3 studies assessing the influence of inhaled antibiotics on the frequency of pulmonary exacerbations (6-8). Ramsey et al. (8) reported a 26% reduction in hospitalizations and a 36% reduction in the use of intravenous anti-pseudomonal antibiotics for those on inhaled tobramycin compared to placebo. Results from both MacLusky et al. (7) and Ramsey et al. (6) showed fewer days spent in the hospital for subjects receiving inhaled tobramycin. Total days of other antibiotics were also lower for the inhaled tobramycin group in these 2 studies; however, these differences were significant only in the larger study (6). Quality of life was assessed in only one study (6); the tobramycin group reported higher scores on the Health Related Quality of Life scale compared to those in the placebo group, though the actual values were not presented.
There were low rates of adverse events reported in all of the studies. Tinnitus occurred more frequently in the tobramycin-treated study participants, as did throat problems and voice alteration.

A Cochrane review of inhaled tobramycin for CF, with the most recent search dated 2006 (10), concluded that aerosolized anti-pseudomonal antibiotics improved lung function. An increase in antibiotic resistance was noted, but this was a low frequency occurrence.

The quality of the sum of the evidence for inhaled tobramycin in cases of moderate to severe lung disease was deemed to be good, as the studies were well-designed and well-conducted, and the results were consistent. Based upon the considerable improvement in lung function, reduction in exacerbations, and low risk of adverse events, the net benefit of aerosolized tobramycin was thought to be substantial.

Recommendation: For patients with CF 6 years and older, who have moderate to severe lung disease and with *Pseudomonas aeruginosa* persistently present in cultures of the airways, the CF Foundation strongly recommends the chronic use of inhaled tobramycin to improve lung function and reduce exacerbations. Level of evidence, good; net benefit, substantial; grade of recommendation, A.

Tobramycin for mild disease

Two trials (n=202) identified by systematic review assessed the use of aerosolized tobramycin in patients with asymptomatic or mild airway disease (Table 2). Gibson et al. (11) studied 21 patients less than 6 years of age with *P. aeruginosa* present in bronchoalveolar lavage and found that *P. aeruginosa* density was decreased in patients receiving inhaled tobramycin. Because of the young age and generally mild lung disease
of the study population, lung function and exacerbation frequency were not primary outcome measures of the trial. In the second trial, Murphy et al. (12) compared aerosolized tobramycin to standard therapy in 181 patients (6 to 15 years of age) over 56 weeks. Of note, the study was halted early because patients treated with standard therapy experienced a greater number of exacerbations requiring hospitalization. Overall, patients receiving aerosolized tobramycin had fewer exacerbations (11.0% vs. 25.6%) than did those on standard therapy. There was no improvement in FEV$_1$, but those on aerosolized tobramycin did have a significant improvement (10%) in the mid-flow measurement (FEF$_{25-75}$).

The quality of the evidence for the use of inhaled tobramycin in patients with mild disease is limited by the number of studies and patients in the larger study were limited because it was halted early, and so was rated as fair in quality overall. Evidence for its use in the youngest population (i.e. <6 years) is too poor to permit any recommendations. The larger study was halted early because of the benefit of a reduction in exacerbations, which we have rated as a moderate net benefit.

Recommendation: For patients with CF 6 years and older who are asymptomatic or with mild lung disease, and with *Pseudomonas aeruginosa* persistently present in cultures of the airways, the CF Foundation recommends the chronic use of inhaled tobramycin to reduce exacerbations. Level of evidence, fair; net benefit, moderate; grade of recommendation, B.

Other Inhaled Antibiotics

Inhaled colistin is used frequently for treatment of patients with CF infected with *P. aeruginosa*. However, only 2 eligible trials of colistin including a total of 155 patients
were uncovered by our search (Table 2). Jensen et al. (13) compared colistin to placebo in 40 patients over 90 days following a course of intravenous antibiotics. Both groups experienced a decrease in FEV$_1$ (11-17%) during treatment; no advantage was seen in the colistin group. Hodson et al. (14) compared colistin to tobramycin in 115 patients over 4 weeks. The patients treated with colistin did not show any measured improvement in lung function, whereas patients receiving tobramycin experienced an increase in FEV$_1$ of 6.7%. No data were provided on exacerbations or quality of life.

There are even fewer data available for other inhaled antibiotics (15, 16). Overall, the committee felt the evidence was insufficient to assess the effects on health outcomes of inhaled antibiotics other than tobramycin because of the limited number and power of studies.

Recommendation: For patients with CF 6 years and older with *Pseudomonas aeruginosa* persistently present in cultures of the airways, the CF Foundation concludes that the evidence is insufficient to recommend for or against routinely providing other chronically inhaled antibiotics (i.e. colistin, gentamicin, ceftazidime) to improve lung function and reduce exacerbations. Level of evidence, poor; net benefit, small; grade of recommendation, I.

Recombinant human deoxyribonuclease

Airway obstruction by thickened secretions and cellular debris is the hallmark of CF lung disease. Recombinant human deoxyribonuclease (dornase alfa) was developed to degrade the large amount of free DNA that accumulates within CF mucus, thereby improving the viscoelastic properties of airway secretions and promoting airway
clearance. The short-term (\leq 14 days) and long-term effects of dornase alfa on lung function, and the long-term effects of dornase alfa on pulmonary exacerbations have been studied. As with inhaled tobramycin, recommendations were stratified based upon the severity of lung disease (see above).

dornase alfa for moderate to severe disease

Nineteen trials of dornase alfa in a total of 3140 patients with moderate to severe disease were identified by systematic review (Table 2). Five of these studies evaluated the long-term efficacy of dornase alfa (17-21), including large, multi-center trials lasting 12-96 weeks (17, 18, 20).

Most short-term studies of dornase alfa showed a significant improvement in lung function as measured by FEV₁. Treatment for 6-14 days increased FEV₁ by 11.2-15.4% when compared to placebo (22-25). Two studies failed to show a significant improvement over placebo in FEV₁ with short-term treatment in clinically stable patients (26, 27), yet long-term studies uniformly demonstrated improvement in lung function with dornase alfa. Fuchs et al. (18) found that FEV₁ increased 5.8% compared to placebo following 24 weeks of therapy with dornase alfa (n=968). McCoy et al. (20) achieved a similar improvement in FEV₁ (net benefit 7.3%) in patients (n=320) with severe CF lung disease treated for 12 weeks. Five studies assessed the effect of dornase alfa on the incidence of pulmonary exacerbations (18, 20, 23, 24, 28), but only Fuchs et al. (18) reported a significant difference, with those in the dornase alfa group requiring fewer days in the hospital or fewer days of antibiotics compared to the placebo group. Finally, 4 trials commented on quality of life measures (18, 23, 24, 28); all reported higher overall well-being scores for those patients on dornase alfa compared to placebo, although this
achieved statistical significance in only one trial (18). Overall, dornase alfa was well
 tolerated; there were few adverse events that were increased by dornase alfa compared to
 placebo. The most common of these was voice alteration.

A Cochrane review of the use of dornase alfa by patients with CF, with the most
 recent search dated 2005 (29), suggested overall improvement in lung function occurred
 in patients receiving dornase alfa in comparison to those receiving a placebo.

Based on the number of patients studied and the breadth of both short- and long-
term studies, the quality of the evidence is good for patients with moderate-severe lung
disease. Further, the improvement in lung function and low risk of adverse events
indicates a substantial net benefit of dornase alfa.

Recommendation: For patients with CF 6 years and older with moderate to
severe lung disease, the CF Foundation strongly recommends the chronic use of
dornase alfa to improve lung function and reduce exacerbations. Level of
evidence, good; net benefit, substantial; grade of recommendation, A.

dornase alfa for mild disease

Four trials were identified that compared dornase alfa to placebo in a total of 520
patients with mild CF airway disease (Table 2). The studies ranged in duration between 2
and 96 weeks.

Quan et al.(30) reported improvement in FEV$_1$ (3.2%) in 239 children with mild
lung disease using dornase alfa compared to 235 children receiving a placebo over 96
weeks. This improvement was not seen in a study of 25 children (11 receiving dornase
alfa, 14 receiving placebo) following 52 weeks of treatment with dornase alfa (31). Quan
et al. (30) also reported a 34% reduction in pulmonary exacerbations. In a separate trial
involving 12 patients less than 5 years of age, Nasr et al. (32) reported improved quality of life for those patients using dornase alfa, but statistical analysis was not reported. As in the trials involving patients with more severe lung disease, the medication was well tolerated with the most common side effect, voice alteration, occurring in up to 18% of subjects (30).

The quality of the evidence identified by the systematic review for the use of dornase alfa in patients with mild lung disease is limited by the number of studies; though there were 3 randomized controlled trials, only 1 consisted of a large number of patients. Thus, the evidence was rated as fair. The net benefit of dornase alfa in this population was rated as moderate.

Recommendation: For patients with CF 6 years and older, and asymptomatic or with mild lung disease, the CF Foundation recommends the chronic use of dornase alfa to improve lung function and reduce exacerbations. Level of evidence, fair; net benefit, moderate; grade of recommendation, B.

Hypertonic saline

Hypertonic saline (HS) inhalation has been proposed as a therapy to increase hydration of airway surface liquid in patients with CF, thereby improving mucociliary clearance (33). Systematic review identified 2 trials of hypertonic (6-7%) saline compared to normal (0.9%) saline in a total of 222 patients, and 2 trials comparing HS to dornase alfa in a total of 62 patients (Table 2). The largest trial investigated the effect of twice daily treatments with 7% saline for 48 weeks in 164 patients (34), while the others involved fewer patients and shorter treatment durations (2-12 weeks).
In a randomized controlled trial, Eng et al. (35) studied the effects of 6% saline administration inhaled twice daily for 14 days in 58 patients, 75% of whom were children. They found that HS therapy led to a mean increase in FEV₁ of 15.0% compared to 2.8% in the placebo (normal saline) group. The larger multi-center study of Elkins et al. (34) enrolled 164 patients (83 receiving HS); twice daily treatment with 7% saline did not result in a difference in FEV₁ compared to placebo. In the 2 crossover trials, use of HS increased FEV₁ 3-7.7% above baseline (36, 37) although there was a greater increase resulting from 12 weeks of once daily dornase alfa, with a net improvement of 8% over twice daily HS (37). Only Elkins et al. (34) assessed exacerbations, demonstrating a 56% reduction in pulmonary exacerbations for patients receiving 7% saline compared to normal saline. In the 2 studies evaluating quality of life (34, 35), only some domains of the Medical Outcomes Study 36-item Short-Form General Health Survey (SF-36) were statistically improved by HS therapy.

A Cochrane review from 2005 on the use of hypertonic saline found that overall lung function improved with the use of HS compared to placebo, but the improvement was not as great as that seen with dornase alfa (38).

Overall, the quality of evidence for the use of HS in patients with CF is limited by the number of studies, though 1 consisted of a large number of patients over a prolonged period of time, and there were consistent findings. Thus, the evidence was determined to be fair in quality. **In general, HS was well tolerated, particularly if the patients were pre-treated with an inhaled bronchodilator;** the most common side effect was cough or bronchospasm, which was clinically significant in only a few patients. The committee determined that HS provided a net benefit that was moderate.
Recommendation: For patients with CF 6 years and older, the CF Foundation recommends the chronic use of inhaled hypertonic saline to improve lung function and reduce exacerbations. Level of evidence, fair; net benefit, moderate; grade of recommendation, B.

Anti-inflammatory agents

Anti-inflammatory therapies are often employed in the treatment of CF lung disease because the inflammatory response in CF airways is excessive (39, 40). It is thought that this excessive and persistent inflammation is a major cause of destruction of the airways, over time leading to bronchiectasis and severe obstructive airways disease. The committee focused on the use of anti-inflammatory agents for CF-related inflammation and excluded studies addressing patients with asthma or allergic bronchopulmonary aspergillosis (ABPA). The committee recognized the challenge of making the diagnosis of asthma in the patient with CF, and has made specific comments regarding this issue in the section on “Key unanswered questions.”

Inhaled corticosteroids

We identified 7 trials evaluating the use of inhaled corticosteroids in CF, including a total of 388 patients with CF ranging in age from 4 to 53 years (Table 2). All of the studies evaluated lung function as an outcome measure, with 2 studies assessing the number of pulmonary exacerbations (41, 42). The duration of the studies varied from an unspecified time to 6 months. The dose of inhaled corticosteroid also varied: beclomethasone (400-1500 mcg) was given 2 to 4 times daily (43, 44); fluticasone (400-500 mcg) was given twice daily (42, 45); and budesonide (800 mcg) was given twice
daily (46, 47) The largest and most comprehensive study was a withdrawal study involving 171 patients, excluding those who had received oral corticosteroids within the prior month or who were using high dose inhaled corticosteroids (41). In this study, patients were randomized to remain on inhaled corticosteroids or to be given placebo over a period of 6 months.

No studies demonstrated a statistically significant improvement in lung function as measured by FEV₁ or FVC, nor were they powered to evaluate lung function decline. Of the 2 studies that presented detailed pulmonary exacerbation data, no differences were noted between the treatment and placebo groups (41, 42). The larger steroid-withdrawal study (41) had a primary outcome of time to exacerbations, and there was no difference between the treatment and placebo groups. A Cochrane review of inhaled corticosteroids in CF, with the most recent search dated 2006 (48), concluded no benefits or harms resulted from inhaled corticosteroids.

The quality of evidence for the benefit of inhaled corticosteroids in patients with CF was limited by the number of patients per trial and the duration of study, though the results were consistent. Thus, the evidence was interpreted as fair. While no statistically significant adverse events were reported, the committee determined that there was zero net clinical benefit of inhaled corticosteroid use in patients with CF.

Recommendation: For patients with CF 6 years and older, and without asthma or ABPA, the CF Foundation recommends against the routine use of inhaled corticosteroids to improve lung function and reduce exacerbations. Level of evidence, fair; net benefit, zero; grade of recommendation, D.

Oral corticosteroids for children
We identified 3 randomized controlled trials evaluating the efficacy of systemic corticosteroids in a total of 354 children with CF (Table 2). All studies used alternate day dosing; age ranges of enrolled patients varied, as did treatment durations (3 weeks to 4 years). Two studies demonstrated significantly improved lung function with corticosteroids (49, 50). A third study, by Eigen et al. (51), demonstrated simply a difference in lung function between active and placebo treated groups. This was the largest study, involving a total of 285 patients ranging in age from 6-14 years. The trial assessed the use of alternate day prednisone (1mg/kg or 2mg/kg, maximum 60 mg) or placebo (95 subjects/treatment group) for a treatment duration of 4 years. The study found that the mean percentage of predicted FEV$_1$ in the placebo group decreased from 79.2% at baseline to 73.8% at 48 months, but the percentage of predicted FEV$_1$ in the prednisone (1mg/kg) group did not decrease significantly (84.0% at baseline and 82.7% at 48 months). No differences were observed in relation to rates of hospitalization across any treatment group. However, all patients in both prednisone treatment groups were discontinued early by the data safety monitoring committee because of an excess number of adverse events in the active treatment arms including abnormalities in glucose metabolism, cataracts, linear growth retardation, and percentage of “colonization” with *P. aeruginosa*.

A Cochrane review, with the most recent search dated 2005 (52), also noted a benefit to lung function and an increase in adverse events with oral corticosteroids.

Because of the duration of the study by Eigen et al. (51), which was performed at multiple centers, and the consistency of the other studies, the overall quality of clinical evidence was interpreted as good. Although there appears to be a benefit to lung function
with steroid therapy, the adverse events related to steroids result in a net negative effect for children with CF.

Recommendation: For patients with CF between 6 and 18 years, and without asthma or ABPA, the CF Foundation recommends against the chronic use of oral corticosteroids to improve lung function and reduce exacerbations. Level of evidence, good; net benefit, negative; grade of recommendation, D.

Oral corticosteroids for adults

A systematic search revealed only 1 eligible trial of corticosteroids in 20 adults (Table 2). The study utilized daily dosing of prednisolone 30 mg for 3 weeks (53). There was no change in lung function or quality of life when compared to placebo. No adverse events were reported. Some of the adverse effects of steroid use in children (e.g., linear growth retardation) are not relevant in adults. However, there is concern for development of osteoporosis and diabetes as a result of oral corticosteroid use, as these are recognized CF-related complications in adulthood. The committee determined there is insufficient data to recommend for or against oral corticosteroid use in adults with CF.

Recommendation: For adult patients with CF (18 years and older) without asthma or ABPA, the CF Foundation concludes that the evidence is insufficient to recommend for or against the chronic use of oral corticosteroids to improve lung function and reduce exacerbations. Level of evidence, poor; net benefit, zero; grade of recommendation, I.

Oral non-steroidal anti-inflammatory drugs (NSAID)
We identified 3 eligible trials of NSAIDs in CF (Table 2). Following a small dose-escalation study (54), Konstan et al. (55) performed a randomized, double-blind placebo-controlled trial of ibuprofen at doses of 16.2 – 31.6 mg/kg body weight in 85 patients with CF over a 4-year period. Patient ages ranged from 5-39 years with FEV$_1$ measurements $\geq 60\%$ predicted upon study entry. The study demonstrated that twice daily, orally-administered ibuprofen resulted in significant slowing of the rate of decline in FEV$_1$ when compared to placebo. The annual rate of change (slope) in FEV$_1$ ($\%$ of predicted value) was 40\% less for the intent-to-treat analysis and 59\% less for the completed-treatment analysis. The effect was most dramatic for patients with CF <13 years of age at time of enrollment. The study found no differences in rates of hospitalization or adverse events.

A second NSAID was studied by Sordelli et al. (56) in 41 patients with CF, 5-37 years of age. Piroxicam was administered at doses of 5-20 mg/ day according to weight, for 12-19 months. The trial failed to demonstrate any benefit in relation to lung function when compared to placebo. A Cochrane review, with the most recent search dated 2005 (57), concluded there were insufficient studies to recommend routine use of NSAIDs.

The limited trial of piroxicam represented a poor level of evidence and the committee was unable to make a recommendation for its use. Although the ibuprofen study was performed at only one center with a modest number of patients (55), it was well-designed and executed over a long period; thus, the committee determined the level of evidence for the benefit of ibuprofen in patients with CF to be fair. Furthermore, the positive effect of ibuprofen evident on the rate of decline in FEV$_1$ and the theoretical potential benefit to improve survival suggest a substantial estimated net clinical benefit.
Konstan et al. postulate that sub-therapeutic doses of ibuprofen might actually exacerbate pulmonary inflammation (58) and thus they strongly recommend pharmacokinetic studies be done on each individual receiving high dose ibuprofen to assure appropriate serum levels (54). The committee maintained concerns about potential adverse effects on renal function over time that would not be apparent in a study with a limited sample size, and determined the net clinical benefit for ibuprofen to be moderate.

Recommendation: For patients with CF 6 years and older, and with FEV$_1$ >60% predicted, the CF Foundation recommends the chronic use of oral ibuprofen to slow the loss of lung function. Level of evidence, fair; net benefit, moderate; grade of recommendation, B.

Leukotriene modifiers

It has been suggested that products of arachidonic acid metabolism, specifically the leukotrienes (LT), may contribute to CF lung disease. Cysteinyl leukotrienes (LTC$_4$, LTD$_4$, LTE$_4$) are predominantly produced by eosinophils, mast cells, and macrophages and have been found in increased concentrations in airway secretions from patients with CF. Such a finding suggests that inhibition of this inflammatory pathway may prove beneficial in CF.

Three studies on the use of leukotriene antagonists, involving a total of 64 patients with CF and ranging between 6 weeks and 4 months, met the inclusion criteria of the modified systematic review (Table 2). One of the studies, a placebo controlled, randomized, double blind crossover study in 12 patients with CF, found that treatment with montelukast for 20 weeks resulted in an increase in FEV$_1$ of 8% of predicted (59). A trial of zafirlukast in 25 patients did not improve lung function (60). Lawrence and
Sorrel used eicosapentaenoic acid in a placebo controlled trial in 16 patients for 6 weeks (61). They reported improved lung function, given as actual volumes, and a reduced sputum volume. Because of the limited number of trials and subjects, we determined the quality of the data to be poor, and no benefit can be determined for leukotriene receptor antagonists.

Recommendation: For patients with CF 6 years and older, the CF Foundation concludes that the evidence is insufficient to recommend for or against routinely providing the chronic use of leukotriene (i.e. LTD4) modifiers to improve lung function and reduce exacerbations. Level of evidence, poor; net benefit, zero; grade of recommendation, I.

Cromolyn

Cromolyn (sodium cromoglycate) has been used in the treatment of CF for bronchial hyperactivity. Three studies involving 44 patients using cromolyn were identified by modified systematic review (Table 2). Two were one day studies, investigating the ability of cromolyn to protect against bronchoprovocation (62, 63). In one, Mitchell et al. (62) tested 15 patients with CF and methacholine induced bronchoconstriction; 4 patients had less hyperreactivity and 2 patients had complete protection from the effects of methacholine when they were pretreated with cromolyn. In contrast, Chua et al. (63) studied 15 children with CF with ticarcillin-induced hyperreactivity and found that whereas albuterol completely blocked the bronchoprovocation, cromolyn only partially blocked the response to inhaled ticarcillin. The one longer study, a double-blind, placebo-controlled, crossover study of 14 patients
with CF revealed no significant effect of cromolyn on clinical assessment, methacholine challenge, or pulmonary function (64).

These studies included few patients and demonstrated virtually no benefit, although there were no noted harms. Thus, the evidence that these therapies are effective is of poor quality, and the balance of benefits and harms cannot be determined.

Recommendation: For patients with CF 6 years and older, the CF Foundation concludes that the evidence is insufficient to recommend for or against routinely providing the chronic use of cromolyn to improve lung function and reduce exacerbations. Level of evidence, poor; net benefit, zero; grade of recommendation, I.

Macrolide Antibiotics

Macrolide antibiotic therapy has been used in diffuse pan-bronchiolitis (a disease with similarities to CF lung disease) with good effect (65). The mechanism of action may be related to either the anti-microbial or anti-inflammatory properties of these agents, or perhaps to both.

Systematic review identified 4 studies that addressed the chronic use of macrolide antibiotics in CF (Table 2). Although no changes in lung function were reported following 6 weeks of clarithromycin treatment in 10 adults with CF (66), a significant improvement in FEV\(_1\) (3.6-6.2%) was seen in patients treated with azithromycin compared to placebo (67-69). These trials were longer term, lasting from 3 (68) to 6 (67, 69) months of treatment, and involving between 41 (69) and 185 (67) patients with CF. Azithromycin doses ranged from 3 times weekly at 250 or 500 mg (67) to 250 mg daily
One trial, which enrolled only patients chronically infected with *P. aeruginosa*, demonstrated that those patients receiving azithromycin experienced a significant reduction in pulmonary exacerbations (67). Patients receiving azithromycin in all 3 trials required fewer courses or days of antibiotics (67-69). Measures of quality of life varied among the studies; Wolter et al. (68) reported improvement in quality of life as measured by the Chronic Respiratory Disease Questionnaire, but no differences were noted in other trials using CF-specific measures (67, 69). Significant adverse events reported with the use of macrolide antibiotics included nausea, diarrhea and wheezing (67), but overall the treatment was well tolerated. Important exclusion criteria for these studies included a history of detection of *Burkholderia cepacia* complex (66, 67, 69) or atypical mycobacteria (66, 67) in sputum cultures, and liver disease or elevated liver function tests (67-69).

A Cochrane review of the use of macrolide antibiotics in CF, with the most recent search dated 2005 (70), found a small but significant improvement in lung function in patients with CF when macrolides were compared to placebo.

Because of the limited number of studies and patients, and the heterogeneity of dosing regimens, the committee graded the quality of the data as fair. However, the committee felt that there was substantial benefit in the studies supporting the use of azithromycin to improve lung function and to reduce the risk of exacerbations in patients colonized with *P. aeruginosa*.

Recommendation: For patients with CF 6 years and older, and with *Pseudomonas aeruginosa* persistently present in cultures of the airways, the CF Foundation recommends the chronic use of azithromycin to improve lung
function and reduce exacerbations Level of evidence, fair; net benefit, substantial; grade of recommendation, B.

Anti-Staphylococcal antibiotics

Staphylococcal bacteria are commonly identified in the sputum of young children with CF. Four studies of the effects of treatment with anti-staphylococcal antibiotics were identified that met our inclusion criteria using a modified systematic review (Table 2). Lower rates of *Staphylococcus aureus* positive cultures were seen in patients receiving anti-staphylococcal prophylaxis in 2 of the trials – a 2-year trial of flucloxacillin in 38 infants with CF (71) and a 2-year trial of cephalexin in 17 patients who were 1-33 years of age (72). There was no difference in pulmonary function in 2 studies (73, 74) including a double-blind, placebo-controlled study by Stutman et al. in 209 infants testing the effect of cephalexin given for 7 years (73). Only Loening-Baucke et al. (72) demonstrated significant improvement in lung function, occurring in patients infected with *Hemophilus influenza* and thought to be related to co-infection with *S. aureus*. Rates of exacerbations and hospitalizations were reduced with prophylaxis in 2 studies (71, 72). Stutman et al. (73), conversely, did not find any differences in CF exacerbations, that is, hospitalizations, infections or hospital days. Cough was reduced in one study (71). Of concern was the finding that treatment with anti-staphylococcal prophylaxis resulted in a greater occurrence of *Pseudomonas* in the sputum cultures of those on prophylaxis; this was reported in the study with the greatest number of patients and longest follow-up (73).
A Cochrane review on the use of antibiotics to prevent infection with *S. aureus*, with the most recent search dated 2006 (75), concluded that fewer children had sputum isolates with *S. aureus* when treated prophylactically with anti-staphylococcal agents, the clinical importance of which is uncertain.

Because there is a limited number of studies, with a heterogeneous selection of antibiotics used and variability in trial duration and ages of patients studied, the committee assessed the quality of evidence for the prophylactic use of anti-staphylococcal therapy as fair. Further, any proposed benefits in lower rates of *S. aureus* infection or equivocal effects on hospitalization and exacerbation rates are outweighed by the risk of earlier or more frequent *P. aeruginosa* infection.

Recommendation: For patients with CF, the CF Foundation recommends against the prophylactic use of oral anti-staphylococcal antibiotics to improve lung function and reduce exacerbations

Level of evidence, fair; net benefit, negative; grade of recommendation, D.

Bronchodilators

β₂-adrenergic receptor agonists

The experience with β₂-adrenergic receptor agonists in CF has recently been summarized in a Cochrane review (76). Out of 43 referenced publications, they selected 14 trials for evaluation (Table 2). The review evaluated both short acting (77-89) and long acting β₂-adrenergic receptor agonists (81, 85, 90) in a total of 257 subjects from 6 to 39 years of age. Only some of the studies commented on reversible airways disease as an inclusion criterion. Short acting β₂-adrenergic receptor agonists (salbutamol or...
albuterol) were administered at daily doses ranging from 80 to 600 mcg (by metered dose inhaler) or from 0.5 to 5.0 mg (by nebulizer). The long acting β2-adrenergic receptor agonists (salmeterol) was administered at doses from 84 to 336 mcg by metered dose inhaler.

Inhaled β2-adrenergic receptor agonists consistently demonstrated an improvement in lung function in short-term studies, ranging from 2 days to 4 weeks, though this benefit was not sustained in long-term studies. Five short term studies focused on patients with documented bronchodilator response or bronchial hyperreactivity (79, 84, 87, 88, 90); in this subset of patients, all subjects showed a significant improvement in lung function as measured by FEV₁ or peak expiratory flow rate. Three studies were long term, lasting 4 to 26 weeks (81, 84, 86). Two of these studies showed improved outcomes as defined by peak expiratory flow (84) or FEV₁ (81). The latter study compared long acting to short acting β2-adrenergic receptor agonists and found a greater improvement with long acting β2-adrenergic receptor agonists. Both short acting and long acting β2-adrenergic receptor agonists were well-tolerated.

The quality of evidence for β2-adrenergic receptor agonist use in CF patients was felt to be good because of the number of studies with consistent results. The net benefit for β2-adrenergic receptor agonists was interpreted as moderate in patients who demonstrate bronchial hyper-responsiveness or a bronchodilator response.

Recommendation: For patients with CF 6 years and older, the CF Foundation recommends the chronic use of inhaled β2-adrenergic receptor agonists to improve lung function. Level of evidence, good; net benefit, moderate; grade of recommendation, B.
Inhaled anti-cholinergic agents

The Cochrane review of bronchodilators cited above (76) also included analysis of short-acting inhaled anti-cholinergic medications; there are no data on the efficacy of a long-acting anti-cholinergic medication. Five studies (Table 2) were identified that assessed the potential benefit of inhaled ipratropium bromide in a total of 79 clinically stable patients with CF from 6 to 43 years of age with disparate lung disease severity (FEV₁ 15.6 – 128.8 % predicted). Ipratropium bromide was administered at doses from 40 to 80 mcg by metered dose inhaler or from 50 to 500mcg by nebulizer. Lung function results following a single dose of ipratropium were compared to those following administration of a placebo or to baseline measurements obtained prior to administration of ipratropium bromide the same day or the day prior. None of the studies assessed any long-term clinically relevant outcome measures.

Three studies demonstrated statistically significant increases in FEV₁ in response to inhalation of ipratropium bromide (82, 83, 87). Acute increases in FEV₁ greater than 10% following inhalation of ipratropium bromide were seen in a subgroup of patients with CF known to exhibit improved airflow in response to inhalation of short-acting β₂-adrenergic receptor agonists (82, 87). Paradoxical decreases in FEV₁ measurements (<10%) were observed in isolated patients with CF following inhalation of ipratropium bromide.

Because outcome measures were limited primarily to physiologic data, there were no long-term assessments, and the trials were small, the level of evidence for the benefit of inhaled ipratropium bromide in patients with CF was interpreted as poor. In addition, the estimated net clinical benefit was felt to be small.
Recommendation: For patients with CF 6 years and older, the CF Foundation concludes that the evidence is insufficient to recommend for or against routinely providing the chronic use of inhaled anticholinergic bronchodilators to improve lung function. Level of evidence, poor; net benefit, small; grade of recommendation, I.

N-acetylcysteine

N-acetylcysteine (NAC) depolymerizes mucus by breaking disulphide bonds. It is hypothesized that breaking these bridges decreases mucus viscosity and improves airway clearance. There are several studies of oral and inhaled NAC in patients with CF, but most studies evaluated changes in rheologic properties of CF sputum. An earlier review of oral and inhaled NAC concluded that there was no benefit from inhaled NAC, but there was a trend towards a potential small benefit with oral therapy (91). The results of our modified systematic review of original research assessing the use of NAC compared to placebo or standard therapy in patients, including the number and type of studies, and the number of participants, are shown in Table 2. Study durations ranged between 2 weeks and 3 months. The quality of the evidence was determined to be of poor quality. None of the studies demonstrated a clinical benefit or any improvement in lung function. There were no significant adverse events reported.

Recommendation: For patients with CF 6 years and older, the CF Foundation concludes that the evidence is insufficient to recommend for or against routinely providing for the chronic use of inhaled or oral N-acetylcysteine to improve lung function.
function and reduce exacerbations. Level of evidence, poor; net benefit, zero; grade of recommendation, I.

Key unanswered questions

There are a great many questions regarding chronic therapies for CF that remain unanswered by existing clinical trials. We now address some of them:

1. *Does ‘chronic’ therapy mean lifelong therapy?* One of the challenges of this review is that clinical trials of these medications have ranged in duration from 2 weeks to 4 years with the typical “long term” duration of treatment being 6 months in duration. It is conceivable that an important treatment benefit (or unintended or adverse event) could be missed in shorter studies or that a treatment effect detected in a short trial may not be durable over a longer period of time.

We note that the ibuprofen study (55) demonstrated substantial benefit but only after a prolonged study period (4 years). Also, a recent observation of sputum culture results in a group of patients who had been on macrolide therapy for 3 years noted an incremental rise in *Staphylococcal* resistance to macrolides over time, from 10% at baseline to 100% in the third year (92). The significance of this finding is not yet known. It is important for the clinician to closely follow each patient and decide if a particular therapy is continuing to benefit the patient or if it should be discontinued.

2. *How should the clinician prioritize these therapies?* The committee recognizes that not all patients will benefit from each of these medications and many patients will benefit from using multiple therapies. In a patient with mild pulmonary
disease or diagnosed asymptptomatically in the newborn period, the clinician must
determine when to introduce a new therapy with the intention of chronic use.

**Balancing the potential long term benefit with the additional treatment burden is a
difficult act.** There are no studies that have evaluated when to introduce any of
these medications; there is a great need for research in this area.

3. *In which order should patients perform their aerosolized therapies?* Many
patients will be using more than one aerosolized therapy. **Very few studies have**
assessed the appropriate order of treatment, and more such studies are needed. Of
note, a recent study showed a benefit to the use of dornase alfa prior to chest
physiotherapy,(93) although an earlier study did not(94); thus, there can be no
consensus on the order of such therapies at present. A pragmatic suggestion that
takes into account ways to optimize delivery (e.g. bronchodilation may improve
distal delivery of drugs given subsequently) is to **order the therapies as follows:**
inhaled bronchodilator, hypertonic saline, dornase alfa, aerosolized antibiotic.

Airway clearance therapies, not addressed here, should be performed after
dornase alfa administration and prior to administration of the antibiotics.

4. *Are there important interactions between these medications?* There are known *in
vitro* drug interactions (e.g. dornase alfa is rendered inactive by high salt
concentrations) but it is not known if this effect will occur *in vivo*. Most of the
studies reviewed here included patients receiving a wide variety of medications; it
is nearly impossible to control for all medication interactions. It is generally
assumed in clinical practice that therapies will be additive; that is, there will be an
independent beneficial effect to the medications. However, it is not known if
there are synergistic, antagonistic, or additive effects of these medications. Again, further studies in this area are needed.

5. **Does the presence of specific bacteria affect the response to chronic pulmonary therapies?** A limitation of some of the studies reviewed here is that certain patients are excluded from participation because of the presence of specific pathogens in sputum cultures. Some pathogens (e.g. *B. cepacia* complex) have been associated with more rapid decline in lung function, and as they are present in a minority of patients, patients with these pathogens have often been excluded from studies so as not to bias results. As such, we are unable to determine whether patients harboring these organisms will benefit from specific medications, but we believe it is reasonable for a clinician to consider generalizing these recommendations to this subgroup of the patient population.

6. **Does the development of antibiotic resistance in patients on chronic inhaled antibiotics affect the clinical response to the drug?** The use of any antibiotic (oral, intravenous, or inhaled) is associated with selection of pathogens with *in vitro* resistance by standard testing. Nevertheless, patients with highly resistant pathogens detected in sputum cultures may still derive clinical benefits from aerosolized tobramycin (95) This may be due to the substantial pharmacodynamic benefits of aerosolized antibiotics; that is, high concentrations of drug can be delivered to the site of infection with low risk of toxicity (96) However, it is not known if this benefit will continue over long periods of time.

7. **How should the clinician assess asthma or bronchodilator responsiveness?**

Making the diagnosis of asthma in this population is challenging, and individual
patients with CF demonstrate varying responses to bronchodilators over time as measured by spirometry. These facts complicate interpreting the present guidelines, as some recommendations specifically exclude patients with a diagnosis of asthma or ABPA. Since patients who demonstrate bronchial hyperreactivity or a bronchodilator response may represent a significant portion of the CF population the physician must assess airway hyperreactivity on an individual basis. Unfortunately, there are no studies that provide sufficient information on the appropriate use of testing such as bronchoprovocation or post-bronchodilator testing to determine airway reactivity accurately in the CF population. It has been suggested that it may be useful to measure bronchodilator responsiveness in all patients on a regular basis and treat those who show a positive response with inhaled bronchodilators (97) However, the caregiver should be cautious about labeling all such patients as having “asthma” and instituting inhaled corticosteroid or other asthma therapy. Once a patient has demonstrated bronchial reactivity, bronchodilators could be continued without repeating challenge tests. After that time, it is difficult to appreciate the utility of repeated testing with respect to therapeutic options.

8. How should we best treat children less than 6 years of age? There are very few studies of chronic pulmonary therapies in pre-school age children. In part, this is due to the fact that appropriate end-points are difficult to identify. Furthermore, Federal regulations make inclusion of young children in research studies more complicated due to concerns of beneficence; institutional review boards applying the Common Rule 45 CFR 46 hold pediatric studies to a higher standard.
However, it is quite possible that early therapy, before lung disease is established, will provide the most significant long term benefits for children with CF. Thus, studies including very young patients must be designed and undertaken.

Conclusions

We have reviewed and evaluated the evidence supporting the use of chronic medications used for the maintenance of lung function in patients with CF. We have developed recommendations based on the quality of the published evidence and the estimate of the net benefit demonstrated within those publications. We recognize the limitations of our review, particularly due to a lack of data regarding therapies in children less than 6 years of age. These recommendations will be amended as new data are reported.

This document should be viewed as a guideline regarding CF care. The introduction and use of specific medications will depend upon the individual patient, their social situation, and parental or patient preferences. We are hopeful that clinicians will find these recommendations to be useful in their care of patients with CF.
Acknowledgments

We gratefully acknowledge valuable contributions to this project from the following. **Johns Hopkins University:** Rajender K. Agarwal, MBBS, MPH; Ting-Yuan Cheng, MS; J. Michael Collaco, MD; Annamarie N. Kisalu, MBChB, MPH; Lauren Kucirka, BA, BS; Oladubu Michael Oluwamayowa, BDS, MPH; Manjunath B. Shankar, MBBS, MHA; Stella S. Yi, MPH; Kelly J. Yu, MPH. **Cystic Fibrosis Foundation:** Robert J. Beall, Ph.D.; Preston W. Campbell, III, M.D.; Jennifer King, B.S.; Terry B. White, Ph.D.
REFERENCES

1. Cystic Fibrosis Foundation Patient Registry, 2005 Annual Data Report to the Center Directors, Bethesda, Maryland,© 2006 Cystic Fibrosis Foundation.

95. LiPuma JJ. Microbiological and immunologic considerations with aerosolized drug delivery. *Chest* 2001;120:118S-123S.

Table 1
U.S. Preventive Services Task Force Recommendation Grades*

<table>
<thead>
<tr>
<th>Strength of Overall Evidence of Effectiveness</th>
<th>Estimate of net Benefit (Benefit Minus Harms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good</td>
<td>A Substantial</td>
</tr>
<tr>
<td>Fair</td>
<td>B Moderate</td>
</tr>
<tr>
<td>Poor</td>
<td>I – Insufficient Evidence</td>
</tr>
</tbody>
</table>

Strength of Recommendations(4)

Recommendation:

A
The committee strongly recommends that clinicians routinely provide [the service] to eligible patients. (The committee found good evidence that [the service] improves important health outcomes and concludes that benefits substantially outweigh harms.)

Recommendation:

B
The committee recommends that clinicians routinely provide [the service] to eligible patients. (The committee found at least fair evidence that [the service] improves important health outcomes and concludes that benefits outweigh harms.)

Recommendation:

C
The committee makes no recommendation for or against routine provision of [the service]. (The committee found at least fair evidence that [the service] can improve health outcomes but concludes that the balance of the benefits and harms is too close to justify a general recommendation.)

Recommendation:

D
The committee recommends against routinely providing [the service] to patients. (The committee found at least fair evidence that [the service] is ineffective or that harms outweigh benefits.)

Recommendation:

I
The committee concludes that the evidence is insufficient to recommend for or against routinely providing [the service]. (Evidence that [the service] is effective is lacking, of poor quality, or conflicting and the balance of benefits and harms cannot be determined.)
Quality of Evidence

Good: Evidence includes consistent results from well-designed, well-conducted studies in representative populations that directly assess effects on health outcomes.

Fair: Evidence is sufficient to determine effects on health outcomes, but the strength of the evidence is limited by the number, quality, or consistency of the individual studies, generalizability to routine practice, or indirect nature of the evidence on health outcomes.

Poor: Evidence is insufficient to assess the effects on health outcomes because of limited number or power of studies, important flaws in their design or conduct, gaps in the chain of evidenced, or lack of information on important health outcomes.
<table>
<thead>
<tr>
<th>Treatment Question</th>
<th>Type of Review</th>
<th>Studies</th>
<th>Total n</th>
<th>Strength of Evidence</th>
<th>Estimate of Net Benefit</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhaled tobramycin moderate-severe lung disease</td>
<td>S* C§ (10)</td>
<td>3 RCT (6, 7, 9) 1 RCO (8) 2 one-arm trials (98, 99)</td>
<td>679</td>
<td>Good</td>
<td>Substantial</td>
<td>A</td>
</tr>
<tr>
<td>Inhaled tobramycin, asymptomatic-mild disease</td>
<td>S</td>
<td>2 RCT (11, 12)</td>
<td>202</td>
<td>Fair</td>
<td>Moderate</td>
<td>B</td>
</tr>
<tr>
<td>Other inhaled antibiotics (colistin, gentamicin, ceftazidine)</td>
<td>S</td>
<td>2 RCT (13, 14) 2 RCO (15, 16)</td>
<td>206</td>
<td>Poor</td>
<td>Small</td>
<td>I</td>
</tr>
<tr>
<td>Dornase alfa moderate to severe lung disease</td>
<td>S C (29)</td>
<td>10 RCT (17-20, 22-26, 28) 3 crossover (21, 27, 100) 6 trials without comparison groups (101-106)</td>
<td>3140</td>
<td>Good</td>
<td>Substantial</td>
<td>A</td>
</tr>
<tr>
<td>Dornase alfa asymptomatic-mild lung disease</td>
<td>S</td>
<td>3 RCT (30-32) 1 crossover (107)</td>
<td>520</td>
<td>Fair</td>
<td>Moderate</td>
<td>B</td>
</tr>
<tr>
<td>Hypertonic saline</td>
<td>S C (38)</td>
<td>2 RCT (34, 35) 2 RCO (compared to dornase alfa) (36, 37)</td>
<td>284</td>
<td>Fair</td>
<td>Moderate</td>
<td>B</td>
</tr>
<tr>
<td>Inhaled corticosteroids (6-18 years)</td>
<td>S C (48)</td>
<td>5 RCT (41, 43-46) 2 RCO (42, 47)</td>
<td>388</td>
<td>Fair</td>
<td>Zero</td>
<td>D</td>
</tr>
<tr>
<td>Oral corticosteroids (age >18 years)</td>
<td>S C (52)</td>
<td>3 RCT (49-51)</td>
<td>354</td>
<td>Good</td>
<td>Negative</td>
<td>D</td>
</tr>
<tr>
<td>Oral nonsteroidal anti-inflammatory drugs (NSAIDs)</td>
<td>S C (57)</td>
<td>3 RCT (54-56)</td>
<td>145</td>
<td>Fair</td>
<td>Moderate</td>
<td>B</td>
</tr>
<tr>
<td>Leukotriene Modifiers</td>
<td>M†</td>
<td>2 RCO (59, 60) 1 controlled trial (61)</td>
<td>64</td>
<td>Poor</td>
<td>None</td>
<td>I</td>
</tr>
<tr>
<td>Cromolyn</td>
<td>M</td>
<td>2 RCT (63, 64) 1 clinical trial (62)</td>
<td>44</td>
<td>Poor</td>
<td>None</td>
<td>I</td>
</tr>
<tr>
<td>Medication Type</td>
<td>Method</td>
<td>Studies/Results</td>
<td>Quality</td>
<td>Rating</td>
<td>Assessment</td>
<td>Grade</td>
</tr>
<tr>
<td>--</td>
<td>-------------------</td>
<td>--</td>
<td>---------</td>
<td>--------</td>
<td>----------------</td>
<td>-------</td>
</tr>
<tr>
<td>Macrolide antibiotics</td>
<td>S, C (70)</td>
<td>2 RCT (67, 68) 1 crossover (69) 1 clinical trial (66)</td>
<td>296</td>
<td>Fair</td>
<td>Substantial</td>
<td>B</td>
</tr>
<tr>
<td>Anti-staphylococcal antibiotics</td>
<td>M, C (75)</td>
<td>3 RCT (71, 73, 74) 1 crossover (72)</td>
<td>306</td>
<td>Fair</td>
<td>Negative</td>
<td>D</td>
</tr>
<tr>
<td>Inhaled β₂-adrenergic receptor agonists</td>
<td>C (76)</td>
<td>14 RCO: nebulized (77-83) metered dose (84-90)</td>
<td>257</td>
<td>Good</td>
<td>Moderate</td>
<td>B</td>
</tr>
<tr>
<td>Inhaled anticholinergics</td>
<td>C (76)</td>
<td>5 RCO: (77, 79, 82, 83, 87)</td>
<td>79</td>
<td>Poor</td>
<td>None/small</td>
<td>I</td>
</tr>
<tr>
<td>Oral N-acetylcysteine</td>
<td>M</td>
<td>1 Phase 1 trial (108) 1 RCO (109) 1 controlled trial (110) 3 crossover (111, 112)</td>
<td>145</td>
<td>Poor</td>
<td>None</td>
<td>I</td>
</tr>
</tbody>
</table>

Abbreviations: *S=systematic; †RCT=randomized controlled trial; ‡RCO=randomized crossover trial; §C=Cochrane; †M=modified systematic
Figure 1: Summary of Search and Review Process

Electronic Databases¹
MEDLINE® – 1567
EMBASE – 1264
CENTRAL – 527

Retrieved
3048

Hand Searching - 5

Duplicates – 683

Abstract Review
2870

Excluded – 2381

Full-Text Screen
289

Excluded – 232

Eligible Articles
57

¹MEDLINE was accessed via PubMed, EMBASE - the Excerpta Medica database, CENTRAL – Cochrane CENTRAL
Register of Controlled Trials
Cystic Fibrosis Pulmonary Guidelines:

Chronic Medications for Maintenance of Lung Health

ONLINE DATA SUPPLEMENT
METHODS

Assessment of Evidence

The committee assessed evidence for each of the treatment questions under consideration in 1 of 3 ways, depending on the perceived availability of evidence:

(i) Systematic reviews of original research

The Cystic Fibrosis Foundation commissioned experts at Johns Hopkins University to conduct the systematic reviews. Systematic reviews of English-language published literature were conducted of articles presenting original data addressing the safety or efficacy of dornase alfa, inhaled hypertonic saline, inhaled antibiotics, macrolide antibiotics, and anti-inflammatory drugs in cystic fibrosis (CF). For each therapy, the effects of treatment were assessed in terms of lung function, pulmonary exacerbations, quality of life, and adverse events. Only controlled trials were eligible for review of treatment effects on lung function, quality of life, and exacerbations. The scope was broadened to include clinical trials without comparison groups when assessing adverse events.

Searches of PubMed, EMBASE® and the Cochrane Central Register of Controlled Trials (CENTRAL) were completed in March 2006. Reference lists of reviews identified through a search of PubMed and The Cochrane Library (Issue 3, 2006) were also surveyed, as were the references of eligible articles.

Two reviewers independently screened articles for eligibility using the criteria outlined above. Disagreements concerning eligibility were resolved by consensus or by a third reviewer. Two reviewers abstracted information about study and participant characteristics, and outcomes for each eligible article. Abstraction included a critical
appraisal of key quality issues such as concealment of treatment allocation or masking of outcome assessor(s). Information from completed abstraction forms was entered into a custom-designed, relational database (Access, Microsoft, Redmond, WA). Evidence tables were developed and a qualitative synthesis was completed for each therapy under review.

(ii) *Modified systematic reviews of original research*

A modified systematic review was performed by members of the committee if it was perceived that a small amount of literature would be available about the medication. Modified systematic reviews of English-language published literature were therefore conducted for articles assessing the safety or efficacy of oral anti-staphylococcal antibiotics, cromolyn, leukotriene modifiers, and N-acetylcysteine in CF. Searches performed by committee members were augmented by a search of PubMed, CENTRAL and EMBASE®, completed in October 2006 by investigators at Johns Hopkins University. Articles presenting original data of controlled clinical trials were considered eligible for inclusion. Two reviewers (committee co-chairs) independently screened articles for eligibility and abstracted information about study and participant characteristics, and outcomes for each eligible article. A critical appraisal of key quality issues was performed and results were summarized and reviewed by committee members.

(iii) *Summaries of existing Cochrane systematic reviews*

Existing Cochrane reviews that addressed the effectiveness of any chronic therapies for CF were identified and summarized for the committee members.
The guidelines developed by the CF Foundation (CFF) consider a wide-range of healthcare decisions including those addressed by the USPSTF (screening, counseling, immunizations and preventive medications) as well as questions of effectiveness of therapeutic interventions. The CFF and the guidelines committees reviewed and considered grading systems. The decision was made to choose a system that was easy to apply, easy to understand and easily adaptable to different sorts of questions and evidence. Choosing one grading system for use across all CFF guidelines (e.g. nutritional guidelines) was also desirable. The USPSTF system incorporates the three domains for grading evidence (quality, quantity and consistency of studies) as well as an explicit consideration of the relative weight of possible benefits and harms in grading the recommendations. In this way, the quality of the evidence and the potential harms and benefits were weighed in determining the recommendations (Table 1).