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Abstract 

 

Parametric tests of linear models for images modelled as random fields are based like 

ordinary univariate tests on distributional assumptions. It is here shown that the effect of 

departures from assumptions in random field tests is more pronounced than in the univariate 

condition. Simulations are presented investigating in detail the influence of smoothing, 

unbalancedness and leverages on empirical thresholds. In certain conditions, significance tests 

may become invalid. As a case study, the existence and effect of departures from normality of 

grey matter probability maps, commonly used in voxel-based morphometry, is investigated, 

as well as the effect of different transformation strategies involving estimating the degree of 

transformation from the data by maximum likelihood. The best results are achieved with a 

voxel-by-voxel transformation, suggesting heterogeneity of distributional form across the 

volume for this kind of data. 
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Non-normality and transformations of random fields, with an 
application to voxel-based morphometry 

 

 

Introduction 
The effect of non-normality on the performance of significance tests based on Student’s t or 

Snedecor’s F statistics were investigated early in the statistical literature (Pearson 1929, 

Pearson 1931, Pearson and Please 1975, Box 1953). The general conclusion from these and 

later studies is that, unless deviation from normality is severe, the impact on classic univariate 

parametric tests is limited, in many cases only reducing the power of the test (see summary in 

Miller 1986). In the first part of this study, simulations on the effect of non-normality on 

random fields were carried out to show their impact on the thresholds that determine achieved 

significance levels in procedures such as statistical parametric mapping (SPM, Friston et al. 

1995). A specific study is justified by the fact that it is difficult to extrapolate the results from 

these early studies to the random field setting. On the one hand, random field theory tests 

(Worsley et al. 1992, 1996) are based on an approximation of the distribution of the extrema 

of the random field, and for this reason they may by more sensitive to deviations from 

normality than statistics of central tendency such as t in the univariate setting (Westfall and 

Young 1993, pp. 56-60). On the other hand, the common practice of enforcing a fixed spatial 

correlation structure by smoothing the data may reduce any original deviation from non-

normality (Salmond et al. 2002). 

The deviation from normality examined here only concern the distribution of the data 

viewed voxel-by-voxel (marginal normality). This means that we are not concerned with the 

full distributional specification of the random field model which would also require, for 

example, that the joint spatial distribution be normal, or that the extent of spatial correlation 
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be uniform across the volume (Hayasaka et al. 2004). In this respect, we also note that while 

the distributional requirements of random field theory tests do not coincide with voxel-by-

voxel distributional assumptions, these latter may be important for other types of tests, or for 

multiple testing situations in general (Westfall and Young 1993). If the correct voxel-by-voxel 

significance threshold varies across the volume, applying a uniform threshold will have the 

effect of applying unequal requirements in weighting the evidence in individual voxels (Beran 

1988). 

This study is primarily motivated by the application of statistical tests on structural 

images, which often consist of probability values or coefficients. The issue is how much non-

normality can be tolerated before the achieved Type I error rates are altered making the test 

invalid or overly conservative. This issue affects unbalanced comparisons, and especially 

single-subject studies (Colliot et al. 2005, Kassubek et al. 2002, Woermann et al. 1999a, b), 

since here the consequences of non-normality are most marked. In the first part of this study 

we will show with the help of Monte Carlo simulations that even after spatial smoothing 

departures from normality can indeed impact random field thresholds. It will be shown that 

this occurs by non-normality levels that would not raise concern in a univariate setting. 

However, the conservativeness of t random field tests generally ensures that the tests remain 

valid. Hence, one may be more afraid of loosing of power than committing a Type I error 

when using random field theory tests, but we will show that exceptions are likely to occur at 

extreme degrees of unbalancedness, such as in tests of individual images, and regressors with 

high leverages. 

In the second part of this study, we will examine the behaviour of empirical thresholds 

computed from 114 gray matter probability maps estimated from MPRAGE images, a type of 

structural T1-weighted images used in voxel-based morphometry (Ashburner and Friston 

2000). Voxel-based morphometry is a prominent methodology in the analysis of structural 

data. We will show here that smoothing is only partially effective in reducing the impact of 
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non-normality, and that in fact non-normality affects the exact thresholds following a spatial 

pattern. To overcome this problem, we investigate the application of data-driven maximum 

likelihood estimates of the required amount of data transformation. 

This study extends existing work on voxel-based morphometry data (Salmond et al. 

2002) in several respects. Firstly, we provide simulations exploring in detail the effect of 

smoothing, unbalancedness, and regressor leverages on the asymmetry of empirical thresholds 

in tests on random fields. Secondly, in the case study with gray matter probability maps we 

use a much larger sample of volumes from an adult population, while Salmond et al. (2002) 

focused on structural images of a small sample of children. The larger sample allows us to 

compute maps of the non-uniform distribution of areas where overthreshold voxels occur as a 

result of Type I errors. Thirdly, we investigate the impact of different transformation 

strategies on the empirical thresholds and the spatial distribution of overthreshold voxels. In 

particular, we study the shortcomings of uniform transformations at smoothing kernels of 4 

mm or less, and compare their performance to that of transformations estimated from the data. 

Materials and methods 
Simulations 

All code implementing the algorithms and the simulations presented here was developed on 

MATLAB 6.1 R12 (The Mathworks, Natick, MA) installed on a Pentium PC running 

Windows 2000 (Microsoft, Redmond, WA). Transformed artificial random fields of size 

32 × 32 × 32 voxels (as in the simulations of Nichols and Hayasaka 2003) were created by 

convolving a Gaussian kernel of full width half-maximum (FWHM) 4 voxels with a standard 

normal deviate x after applying the inverse Box-Cox transformation ( ; , )f x α β : 

 

[ ]
1

exp( ) when 0
( ; , )

( )( 1) when 0

x
f x

x β

α β
α β

α β β

+ =⎧⎪= ⎨
+ + ≠⎪⎩

 (1)

(see Box and Cox 1964). To investigate the effect of kurtosis, the following power 

transformation was used: 
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 ( ; ) sgn( )f x x xϑϑ = ⋅ , (2)

where sgn(x) is the sign of x: +1 or −1. In all transformations, data were centered and scaled 

to unit variance. To avoid edge effects, images were padded at the sides with random variates 

for 3 times the FWHM size of the kernel prior to smoothing. Random numbers were obtained 

from MATLAB’s generator 5. In computing the test statistic in the unbalanced trials, the 

smaller group was subtracted from the larger group. Trials from artificial data and resampling 

trials were repeated 2000 times (the confidence interval of a frequency of 0.05 estimated from 

a series of 2000 Bernoulli trials has width less than 0.01). Variance, skewness, and kurtosis 

were computed using the algorithms described in Press et al. 1988, pp. 613-614. To obtain the 

theoretical random field theory thresholds, code from the SPM2 package was used (Wellcome 

Department of Cognitive Neurology, London; online at http://www.fil.ion.ucl.ac.uk). 

Significance of rates of overthreshold extrema was computed by comparing the rates of 

skewed or kurtotic random fields with the rates of normal fields. This was achieved by 

establishing the empirical threshold at which normal random fields gave overthreshold voxels 

at a rate of 0.05. This threshold was subsequently applied to non-normal fields, and the 

overthreshold voxel rates were computed. Pearson’s χ2 test was used (Collett 2003), rejecting 

the null hypothesis of equal rates in normal and non-normal fields at a significance level of 

0.001. 

Gray matter maps 

All magnetic resonance imaging (MRI) data were obtained with a 3-Tesla Magnetom Allegra 

(Siemens, Erlangen, Germany) MRI system equipped with a head volume coil. All 114 

subjects (62 females, average age 25.6, min and max ages 18 and 55) were scanned over a 

predefined period at the Department of Psychiatry of the University of Ulm after obtaining 

informed consent. The study protocol was approved by the local ethical committee. Images 

were individually screened to exclude pathology. Images were obtained using a T1-weighted 

MPRAGE sequence. Image size was 256 × 256 × 19 voxels, voxel size 1 × 1 × 1 mm. The 
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images were acquired with TR 3300, TE 96, a flip angle of 90°, a bandwidth of 1220 

Hz/Pixel, and a field of view of 240 × 240. We made use of the SPM5 package for 

realignment, stereotactic normalization, segmentation (after intensity modulation), and 

smoothing of volumes (Frackowiak et al. 1997). To obtain the segmentation maps, all 

volumes were realigned and registered to a T1 template (Montreal Neurological Institute) in 

one step using SPM5 (Wellcome Department of Cognitive Neurology, London; online at 

http://www.fil.ion.ucl.ac.uk), and resampled to obtain voxels of size 2 × 2 × 2 mm. This 

procedure yields voxel-by-voxel maps of the probability of belonging to cerebrospinal fluid, 

gray or white matter compartments. Only the gray matter probability maps (most commonly 

examined in voxel-based morphometry) were considered in this study. The gray matter maps 

were smoothed using an isotropic Gaussian kernel of FWHM = 4, 8, and 12 mm (2, 4, and 8 

voxels), and masked by excluding average values below 0.05 (the same mask as in Salmond 

et al. 2002). 

Transformations of gray matter maps 

Conformity to normality assumptions of probability values, which are constrained to lie 

between 0 and 1, is often achieved by means of the logit transformation of the raw signal 

value y (Atkinson 1985, Ashburner and Friston 2000): 

 ( ) ( )logit log 1y y y⎡ ⎤= −⎣ ⎦ . (3)

To obtain intermediate transformation grades, the logit transformation may be replaced 

by a family of transformations having the logit as a particular case. For smoothing kernels of 

4 mm, we applied the folded power transformation family (Atkinson 1985, pp. 138-139): 

 
( ) ( )

( )
1 0 1,

logit 0
y yf y

y

λλ

λ
λ

λ

⎧ − − < ≤⎪= ⎨
=⎪⎩

 (4)

Indexed by the parameter λ, this transformation yields the logit as λ approaches zero, and  

untransformed data (up to the addition of a constant) for λ = 1. An adequate value of λ can be 

chosen by maximizing the profile log-likelihood L(λ), (Box and Cox 1964): 
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( ) 2ˆ( ) / 2 log logL N Jλ λλ σ= − + , ( )

1

N
i

i i

f y
J

y
λ

λ
=

∂
=

∂∏ .   (5)

In this expression, 2ˆλσ  is the variance estimate of the errors obtained from the residuals of the 

maximum likelihood fit of the transformed data, and N the number of observations. J is the 

Jacobian of the transformed data, allowing for the change of scale of the response due to the 

transformation (details are available in standard textbooks such as Atkinson 1985 or Cook and 

Weisberg 1980). 

The transformation may be estimated from the pooled data across the whole volume, or 

voxel by voxel. In this latter case it is imperative to use the normalized transformed data: 

 ( ) ( ) 1/ Nz y f y Jλ λ λ= . (6)

Normalization is required since the transformed values are not in the same scale when the 

transformation parameters differ in each voxel. This is a problem for enforcing smoothness by 

applying a Gaussian kernel, and for empirical smoothness estimation or any statistic 

computed on the residuals, since the residuals are in the scale of the data. Furthermore, 

transforming the data to the same scale makes it much easier to inspect the transformed data. 

Results 
Effect of skewness and kurtosis on distribution of extrema 

In this first simulation, the inverse Box-Cox and power transformations were applied prior to 

smoothing artificial random fields, obtaining data with increasing skewness and kurtosis (see 

Materials and Methods for details). The plots of the empirical and the theoretical thresholds 

are displayed in Figure 1. 

INSERT FIGURE 1 ABOUT HERE 

One can see that the effect of skewness on the Monte Carlo thresholds can be 

substantial, and increases when the smoothing kernel is smaller (top half of Figure 1). The 

first trial, marked with ‘N’ on the abscissa, refers to untransformed data, and gives therefore a 

Monte Carlo estimate of the threshold for normal data at the chosen significance level 

(p = 0.05). In black dashed lines the theoretical thresholds computed according to random 
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field theory, which lie, as expected, between the Monte Carlo thresholds of the two extrema, 

and slightly above the Monte-Carlo estimate for normal data. Their position does not 

correspond exactly to the Monte Carlo thresholds, since the theoretical thresholds refer to 

continuous random fields and not to lattice approximations as in this simulation and in digital 

images (see Nichols and Hayasaka 2003, Worsley 2005). Realistic degrees of skewness prior 

to smoothing lead to residual skewness after smoothing that would be of little concern in a 

univariate distribution, but have an impact on random field thresholds. 

Positive skewness, as induced by the inverse Box-Cox transformation in these 

simulations, moves the empirical thresholds for maxima upwards and lowers the empirical 

thresholds for minima. An equal amount of negative skewness would have the same effect, 

except that empirical thresholds for maxima would be lowered and those for minima would be 

raised (Miller 1986). 

One may also note that the departure of the absolute empirical thresholds for maxima 

and minima from the normal case is not exactly symmetric. Rather, maxima thresholds appear 

to be slightly more affected by the inverse Box-Cox transformation than minima thresholds. 

This is due to the fact that the inverse Box-Cox transformation also induces a light kurtosis in 

the data. Co-occurrence of skewness and some degree of kurtosis is in fact a common 

occurrence in real data. When only kurtosis is present (bottom half of Figure 1), its effect is an 

increase of the Type I error rate on both sides of the distribution, and tests in both directions 

are affected identically, unlike in skewness. Hence, in the top half of Figure 1, where 

skewness and some kurtosis co-occur, the effect of kurtosis is to compound the effect of 

skewness for tests in one direction, and compensate it in the other. 

The effect of kurtosis alone on the Monte Carlo thresholds can be substantial, but 

smoothing is here more effective in making the data more normal. Kurtosis is more quickly 

dampened as an effect of the central limit theorem than skewness (Miller 1986, p. 6). 
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Effect of skewness on error rates in t tests in ANOVA models 

Two factors affect the impact of skewness in t tests in ANOVA models. First, the group 

averages are more normally distributed than the original data as an effect of the central limit 

theorem. Second, if the data are balanced and the skewness is the same in both groups, its 

effects will cancel out, and the test will not be affected (irrespective of the amount of 

smoothing). This is because, in the subtraction of the means of a t test, the long tail of the 

mean that is subtracted is flipped over to the other side, compensating the short tail of the first 

mean (for an analytical formulation and further details, see Miller 1986, p. 42). By contrast, if 

the data are unbalanced, the skewness of the smaller group will dominate the t statistic. 

In the following simulation, distributions of extrema of 2000 t random fields were 

obtained by carrying out t tests on 30 random fields with smoothing kernel of 2 voxels 

divided into two groups of varying sizes, from perfectly balanced (15/15) to extremely 

unbalanced (1/29) (top row of Figure 2). 

INSERT FIGURE 2 ABOUT HERE 

The simulation shows that, as an effect of averaging, the impact of skewness is less than 

in the previous simulation, except in the single-image test. For all group sizes except the 

single image case, random field theory tests remain valid, also as a consequence of the 

increased conservativeness of t relative to Gaussian fields (Nichols and Hayasaka 2003). 

However, differences in the Monte Carlo thresholds between minima and maxima are 

noticeable. 

Effect of skewness and kurtosis on error rates in t tests in regression models 

Skewness is a common concern in linear regression contexts (Atkinson 1985). To characterize 

the possible susceptibility of a covariate coefficient estimate to be influenced by skewness, we 

turned to the leverage, a measure of remoteness in regression space of the values of the 

predictors xi for a single observation i relative to the other N observations modeled by the 

design matrix X: 
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 ( ) 1−′ ′=i i ih x xX X , i = 1, 2, … N,    (7)

The leverage hi of the observation i is the ith diagonal of the hat matrix ( )-1′ ′H = X X X X  and 

ranges from 1/N to 1. The larger the leverage of an observation, the more determined the 

fitted value ˆiy  from the observed yi alone. When hi = 1, ˆiy  and yi are identical and the 

residual is zero (Atkinson 1985). 

In the classic texts on linear model diagnostics (such as Cook and Weisberg 1980), the 

importance of high leverage observations derives from their possible large influence on the fit 

that occurs when they correspond to outliers in the data. In the present context, the ‘outliers’ 

are samples from the tails of a non-normal distribution. Since the same model with high 

leverage observations is repeatedly fitted thousands of times, it is quite likely that a high 

leverage observation co-occurs with a sample from the tail of the distribution somewhere in 

the volume. The test statistic will have a large value here, impacting on the distribution of the 

extrema. This explains the effects on the rates of overthreshold voxels shown in Figure 3. 

INSERT FIGURE 3 ABOUT HERE 

One can see that here the effect of high leverages on the overthreshold rates is qualitatively 

similar to that of unbalancedness in ANOVA (Figure 2). Hence, high leverages indicate that 

statistical inference may be affected by skewness in regression. 

Departure from assumptions in gray maps from segmented MPRAGE images 

In this section the distribution of extrema in mean comparisons of gray matter probability 

maps from MPRAGE images of 114 normal subjects will be examined at degrees of kernel 

smoothing from 4 to 12 mm FWHM (see the Materials and Methods section for details on the 

acquisition of these images). Being probability values, these maps are expected to depart from 

normality to the extent to which they approach 0 or 1. Parametric maps of the initial mean, 

variance, skewness, and kurtosis of these images are shown in Figure 4. It can bee seen that 

variance is especially high at the border zone between gray and white matter, while skewness 

affects the distribution at the edge of the brain and in the white matter. The pattern of kurtosis 
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is more complex. There are isolated small patches of kurtosis values larger than 10, located 

especially at the border of the gray matter mask. Most voxels have more moderate kurtosis 

values which show a tendency to form a spatial pattern following the convolutions of the 

cortical mantle. 

INSERT FIGURE 4 ABOUT HERE 

To explore the impact of non-normality on significance thresholds, 30 volumes were 

sampled at random without replacement at each of 2000 trials, and allocated randomly to two 

groups. Differences between group means were computed voxel by voxel and subjected to a t 

test as in the Monte Carlo studies of the previous sections. Unbalanced (10/20, 5/25) as well 

as balanced (15/15) reference comparisons were computed. In Figure 5, the thresholds for 

tests of increased gray matter (corresponding to maxima thresholds) are higher than those for 

decreases (corresponding to minima thresholds), a finding compatible with a preponderance 

of data with a long right tail coming from low probability values in the map. In the 8 mm 

smoothing group and the unbalanced comparison 10/20, thresholds are about a half t value 

apart; in groups of sizes 5/25, the difference is almost 1.5 t values. It is also worth noting that 

with decreasing smoothing kernels, the overthreshold rates not only diverge, but also shift 

upwards (Figure 5, right). This indicates that there are sources of non-normality other than 

skewness whose influence becomes perceptible at narrow smoothing kernels. 

The dashed black lines of Figure 5 also show random fields theory thresholds computed 

from an estimate of the smoothness of the centered gray matter probability maps (the 

residuals from a fit to the intercept). This choice is intended to provide a rough equivalent of 

the SPM implementation, where smoothness is estimated from the residuals to the fit. [We 

gave much thought to how estimating the smoothness in the present context, since the 

residuals are not distributed like the errors. It turned out that it was computationally 

prohibitive to compute the smoothness estimates on the residuals of the 2000 trials, exactly 

mimicking SPM. Note that the gist of our argument concerns the asymmetry of the empirical 
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thresholds and the spatial distribution of the overthreshold voxels, and these aren’t affected by 

the way smoothness is estimated for the parametric test]. Because of the conservativeness of 

the random fields test, their thresholds are in most cases higher than the empirical thresholds. 

This makes the overall test valid at the nominal significance level. In the 12 mm smoothing 

group, the achieved alpha rates of random field theory tests of increased gray matter are 

always within the nominal alpha rates (confirming the findings of Salmond et al. 2002), but 

the empirical thresholds are about one t value higher than in tests for reduced gray matter. 

INSERT FIGURE 5 ABOUT HERE 

In Figure 6 maps of the occurrence of overthreshold voxels are shown (uncorrected 

thresholds at p = 0.001 were used, instead of the corrected thresholds on the previous 

simulations, as it may well be unwise to estimate the distribution of extrema that far in its tail 

from only 114 MPRAGE images). Because of the sparseness of overthreshold clusters, even 

at this relatively liberal threshold, good spatial rendering was obtained using 8000 trials 

(instead of the 2000 of previous simulations). In this and all the following maps, the colour 

range is adapted to the range of the data to achieve a good contrast and help to recognize 

anatomical features, when they exist. To appreciate the differences in uniformity of the 

occurrence of overthreshold voxels, attention should be paid to the range of the colour scales, 

displayed on the right of the maps: the smaller the range, the more uniform is the occurrence 

of overthreshold voxels. 

INSERT FIGURE 6 ABOUT HERE 

The maps of Figure 6 show that there are much more overthreshold than underthreshold 

voxels, and that they follow a spatial pattern instead of being randomly distributed across the 

masked image. In the map with the smaller smoothing kernel of 4 mm, it is possible to 

recognize the preponderant influence of the voxel-by-voxel skewness of the gray matter 

probability maps (Figure 4). Thus, even when nominal alpha rates are respected, the spatial 

distribution of overthreshold voxels is biased. The maps also show that, while guaranteeing 
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correct tests, smoothing kernel sizes of 12 mm obliterate much anatomical detail. At these 

levels of smoothing, validity of statistical tests is achieved at the expense of the fine-grained 

structure of the cortical mantle. Furthermore, the asymmetry of the occurrence of 

overthreshold and underthreshold voxels is still present. 

Transformations of segmented MPRAGE images 

To reduce the impact of non-normality in voxel-based morphometry, it has been proposed to 

transform the data with the logit transformation (equation 3, Ashburner and Friston 2000). 

When applied to these data, however, the logit transformation brought about a reversal of the 

overthreshold rates pattern visible at small smoothing kernels (Figure 7). At intermediate and 

large smoothing kernels, by contrast, the logit transformation appears adequate. 

INSERT FIGURE 7 ABOUT HERE 

One simple strategy to limit the impact of non-normality is to raise the threshold of the 

gray matter values over which the parametric map is computed, hoping to strike the right 

trade-off between resolution requirements and spatial coverage. This would exclude the areas 

where the probability of the voxel belonging to gray matter is low, and hence the areas where 

the distribution most departs from normality. Here, an alternative strategy based on 

intermediate transformation grades is investigated to gain insight on the characteristics of the 

signal, and explore an automatic procedure based on statistical methodology. To obtain 

intermediate transformation grades, the appropriate parameter λ of the folded power 

transformation (equation 4) was estimated by maximum likelihood (equation 5). Under the 

assumption that the same transformation is appropriate for the whole volume, λ can be 

estimated by pooling the data from all voxels, obtaining λ = 0.4. When applied to the data at 

the narrow smoothing kernel of 4 mm, the transformation redressed the unbalance of 

overthreshold voxel frequency observed with the logit transformation (Figure 8, left). Note, 

however, that the tendency of the thresholds to rise with unbalanced comparisons is still 

present. 
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INSERT FIGURE 8 ABOUT HERE 

Unfortunately, when the maps of overthreshold voxels in the 5/25 comparison are 

inspected (Figure 8, right), one can see that overthreshold signals still occur in a specific 

spatial pattern involving white matter, indicating that no adequate normalization of the data 

can be achieved using a single transformation across the whole volume. The consequence of 

this is that any test procedure that uses a simultaneous threshold over the whole volume will 

be more liberal with some voxels, and more conservative with others. 

To correct for inhomogeneous skewness, separate λ parameters were estimated voxel by 

voxel, normalizing the transformed data (equation 6) to obtain meaningful smoothness 

estimates. The resulting composite transformation brought about small unfavourable changes 

to the empirical thresholds (Figure 9, left), but improved the spatial distribution of 

overthreshold voxels considerably (note the narrower range of overthreshold voxels in the 

colour scale of Figure 9, right). However, a spatial pattern constituted by a rim parallel to the 

surface of the brain, already present but less evident in the overthreshold maps of Figures 6 

and 8, is visible in the tests for overthreshold maxima in the comparison 5/25. Interestingly, 

this rim is also visible in the kurtosis maps of the untransformed images (Figure 4). 

INSERT FIGURE 9 ABOUT HERE 

More insight into the workings of the voxel-by-voxel transformation and its role in 

reversing the impact of skewness can be gained by inspecting Figure 10, where the parameter 

λ is shown in the images on the left. On the right, the skewness values of the gray matter 

probability maps have been redrawn, showing that the transformation is most marked (values 

of lambda around zero) when the skewness is large. This is especially the case around the 

ventricles. 

INSERT FIGURE 10 ABOUT HERE 



 14

Discussion 
The Monte Carlo studies presented here demonstrate that the effect of sampling extrema 

dominates over that of spatial smoothing (Figure 1). Even at relatively large smoothing 

kernels the effect of skewness on effective Type I error rates is noticeable. In t tests, the effect 

of the central limit theorem is that of further limiting the impact of skewness. In these 

circumstances, the effect on effective Type I error rates is complex: any amount of 

unbalancedness in the data leads to noticeable effects in the distribution of extrema, especially 

at smaller smoothing kernels. However, t random field thresholds are more conservative at 

narrower smoothing kernels, compensating or compounding the effect of skewness depending 

on the direction of the test. Empirical thresholds are also sensitive to kurtosis, but in this case 

both spatial smoothing and the effect of averaging are more effective in enforcing normality 

onto the data (Figure 2). 

Skewness in the data can affect empirical thresholds in the presence of non-uniform 

leverages in the predictors (Figure 3). This is of some practical importance: leverage plots 

developed for linear regression diagnostics are applicable to statistical parametric mapping 

without modifications, since they do not involve residuals or fitted values, which are different 

in each voxel. As in standard linear regression, however, it should be remembered that high 

leverages do not automatically translate into high-influence observations; for this to happen, 

they need to co-occur with a sample located in the tail of its distribution. 

For the purpose of inducing normality, averaging is at least as important as smoothing. 

In functional neuroimaging it is common to acquire hundreds of volumes per experiment; 

statistics based on so many observations are not likely to be severely affected due to the effect 

of the central limit theorem on their distribution, unless produced by a fit on a predictor giving 

large leverage to individual observations. The situation may be different, however, in studies 

of structural images, especially those of single subjects (Figure 5). In our sample of gray 

matter probability maps, skewness failed to be completely removed by spatial smoothing, 
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even at large smoothing kernels, resulting in a spatial pattern of overthreshold extrema 

(Figure 6). 

Our results show that it might not be an entirely trivial task to correct for the non-

normal distribution of gray matter probability maps, since the best results might be obtained 

with voxel-by-voxel computations of the required transformation (Figures 8 and 9). This 

suggests that the deviations from normality do not follow a uniform pattern across the 

volume. Even with this technique, however, small asymmetries in the overthreshold rates and 

a residual spatial pattern in the occurrence of overthreshold voxels (possibly caused by 

kurtosis) were present. 

It is important to mention that our primary objective here was not to provide a specific 

technique to address the problem in the context of a given model, but to characterize the 

distribution of this type of data more generally. In particular, we opted here for using all 

images at once in computing the transformation parameter λ, instead of using the residuals of 

the model in each trial. This would not only have increased the cost of our computations 

prohibitively, but is also justified by our aim to characterize the data in general terms. When a 

specific model is given, the transformation parameter will be computed from the residuals of 

the model. For studies with small samples, the applicability of voxel-by-voxel transformations 

remains an open issue, so that the importance of balanced comparisons must be stressed. In 

any case, if a uniform transformation is used, then a folded power transformation with λ = 0.4 

appears to be preferable to the logit (Figures 7 and 8). 
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Figure legends 

Figure 1. Monte-Carlo estimate of the thresholds at significance level 0.05 for data departing from normality, 

obtained from 2000 trials. Columns from left to right: decreasing degrees of smoothing. Top row: random fields 

at different degrees of skewness (Box-Cox transformation with α = 10). On the abscissa, decreasing β values 

indicate increasing skewness; the letter ‘N’ denotes data without transformation (normally distributed). Bottom 

row: random fields at different degrees of kurtosis (power transformation, exponent on the abscissa). At the top 

of each plot, marginal skewness or kurtosis measured from the artificial data before and after smoothing. The 

plots of asterisks and circles refer to absolute empirical thresholds for maxima and minima, respectively, while 

the random field theory thresholds are shown by black dashed horizontal lines. Overthreshold rates that 

significantly differ from rates of untransformed normal fields are marked by ‘×’ (p < 0.001). 

Figure 2. Monte-Carlo estimate of the thresholds at significance level 0.05 from 2000 t maps with 28 degrees of 

freedom for increasingly unbalanced comparisons (columns from left to right). Top row: inverse Box-Cox 

transformation (α was set to 10 as in the previous simulation). Bottom row: power transformation (same 

parameters as in the previous simulation). At the top of each plot, marginal skewness or kurtosis measured from 

the artificial data before smoothing. The skewness of the smoothed t maps or the kurtosis of the residuals (t maps 

are kurtotic even if the data are normal) are also shown.  Other conventions as in Figure 1. 

Figure 3. Monte-Carlo estimate of the thresholds at significance level 0.05 from 2000 t maps (28 degrees of 

freedom) from skewed data at increasing leverages (columns from left to right) at smoothing kernel FWHM = 2. 

As in the previous simulations, skewness was obtained by applying the inverse Box-Cox transformation (α = 10). 

Increasing leverages were obtained by creating a regressor from a normal random variate, and adding a fixed 

amount (1, 3, 5, 7 standard deviations) to the first predictor. Top row: empirical and parametric thresholds (same 

conventions as in Figure 1). Bottom row: histogram of the leverages obtained by pooling the leverages from all 

2000 trials. In this simulation, leverages above 0.4 (for the bulk of the leverages lying below 0.2) lead to 

substantial asymmetries in the thresholds for maxima and minima. 

Figure 4. From left to right, mean, variance, skewness, and kurtosis (computed so that zero means no kurtosis) of 

gray matter probability maps before smoothing, masked at average gray matter probability values larger than 

0.05. Note that the kurtosis map has been drawn with a colour scale with most of its dynamic range at the lower 

values; this was done to increase the contrast at kurtosis values between 0 and 10, which are those that involve 

the large majority of voxels and follow recognizable spatial patterns. 
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Figure 5. Empirical thresholds at significance level 0.05 from 2000 t tests of resampled gray matter probability 

maps at different degrees of smoothing (columns from left to right) and unbalancedness (abscissa). Values for 

maxima and minima are drawn as asterisks and circles, respectively. The approximate theoretical random fields 

theory thresholds are drawn as dashed horizontal lines. Overthreshold rates that significantly differ from rates of 

balanced comparisons are marked by ‘×’ (p < 0.001). 

Figure 6. Transversal slices of colour-coded number of voxels over the upper and lower thresholds for p = 0.001, 

uncorrected, in the comparison 5/25, at smoothing kernels of 4 (left) and 12 mm (right) computed from 8000 t 

tests between randomly resampled volumes. 

Figure 7. Empirical thresholds at significance level 0.05 from 2000 t tests of resampled logit-transformed gray 

matter probability maps at different degrees of smoothing (columns from left to right) and unbalancedness 

(abscissa). Conventions as in Figure 5. 

Figure 8. Left: Empirical thresholds at significance level 0.05 from t tests of resampled gray matter probability 

maps, after applying a smoothing kernel of 4 mm and the folded power transformation with λ = 0.4 at different 

degrees of unbalancedness (abscissa). Conventions as in Figure 5. Right: Transversal slices of colour-coded 

number of voxels over the upper and lower thresholds for p = 0.001, uncorrected, computed from 8000 trials of t 

tests between resampled volumes in the comparison 5/25. 

Figure 9. Left: Empirical thresholds at significance level 0.05 from t tests of resampled gray matter probability 

maps, after applying a smoothing kernel of 4 mm and the folded power transformation estimated separately at 

each voxel at different degrees of unbalancedness (abscissa). Conventions as in Figure 5. Right: Transversal 

slices of colour-coded number of voxels over the upper and lower thresholds for p = 0.001, uncorrected, 

computed from 8000 trials of t tests between resampled volumes in the comparison 5/25. 

Figure 10. Left: Lambda of the folded power transformation, estimated voxel-by-voxel. Right: Skewness of gray 

matter probability values, redrawn here for convenience from Figure 4. 
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