
 

Components of Variance in Brain Perfusion and the 
Design of Studies of Individual Differences: The 

Baseline Study 
 

Roberto Viviani,* Eun-Jin Sim,* Hanna Lo,* Sven Richter,* 

Sebastian Haffer,* Nadine Osterfeld,* Jan Thöne,+ Georg Grön,* 

Petra Beschoner* 

 
* Department of Psychiatry III  

University of Ulm 
+ Universitätsklinik für Neurologie,  

St. Josef Hospital, Klinik der Ruhr-Universität Bochum 
 

Corresponding author: 
Dr Roberto Viviani, PhD 
Department of Psychiatry III 
University of Ulm 
Leimgrubenweg 12 
89075 Ulm, Germany 
Telephone: +49 731 50061569 
E-mail: roberto.viviani@uni-ulm.de 
 
 
 

NOTICE: this is the author’s version of a work that was accepted for publication in NeuroImage. Changes 

resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other 

quality control mechanisms may not be reflected in this document. Changes may have been made to this work 

since it was submitted for publication. A definitive version was subsequently published in NeuroImage, [46:12-

22, 2009 May 15] DOI:10.1016/j.neuroimage.2009.01.041. 



− 1 − 

Components of Variance in Brain Perfusion and the Design of 
Studies of Individual Differences: The Baseline Study 

 

 
Abstract 
Simple baseline studies correlate average perfusion levels measured at rest with individual 

variables, or contrast subject groups as in case-control studies. In this methodological work, 

we summarize some formal properties of the design of these studies, and investigate the 

sources of variance that characterize data acquired with the arterial spin labelling technique, 

with the purpose of alerting users to the main sources of variation that determine background 

variance and affect the power of statistical tests. This design typology is characterized by two 

variance components: between acquisitions and between subjects. We show that variation 

between acquisitions is affected by the presence of large vessels and venous sinuses, with 

potential adverse effects especially in the temporal and insular regions, and provide maps of 

the number of acquisitions or subjects required to reach the desired estimate precision. 

Furthermore, we show that the largest source of variation between subjects is captured by 

global perfusion levels, and can in principle be removed by adjusting the data. Significance 

levels, however, are not always only improved by the adjustment procedure; we provide an 

example in the correlation with age, and attempt to explain the consequences of the 

adjustment with the help of a principal component analysis of the data. We also show the 

existence of variation between subjects in the perfusion in the territory of the posterior 

cerebral artery and in hemispheric asymmetry. 
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Components of Variance in Brain Perfusion and the Design of 
Studies of Individual Differences: The Baseline Study 

 

 

Introduction 
Arterial spin labeling (ASL) is a magnetic resonance imaging technique for the estimation of 

regional blood perfusion (rCBF) in the brain (see Buxton 2002 for a comprehensive 

introduction). This technique is particularly appropriate in the study of states or conditions 

lasting one minute or longer (Aguirre et al. 2002). Unlike positron emission tomography 

(PET), ASL allows the convenient and economical acquisition of quantitative brain imaging 

data without exposing participants to ionizing radiation. Furthermore, the spatial and temporal 

definition of ASL is generally superior to that of PET. However, until recently, technical 

limitations prevented the acquisition of more than a small number of slices. These limitations 

have been superseded by the introduction of new ASL sequences that maintain the dose of 

transferred energy within acceptable limits (such as the continuous arterial spin labeling 

sequence, CASL, introduced by Wang et al. 2005). 

This study concerns the application of the CASL technique in the baseline condition. In 

this condition, participants are placed in the scanner and are asked to lie quietly and rest 

without falling asleep. Studies of baseline brain activity have a history going back to PET 

studies of baseline metabolism, both in normal subjects, where the effect of individual 

variables such as gender or age was investigated (see Tumeh et al. 2007, Willis et al. 2002 for 

recent reviews), and in neurological and psychiatric disorders such as depression, to name one 

example (Drevets 2000, Mayberg 2003). More recently, baseline cerebral metabolism has also 

been shown to involve relative activation of medial and temporoparietal cortical areas 
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(Shulman et al. 1997), thought to reflect the operation of a ‘default mode network’ during rest 

(Raichle et al. 2001). Because of their safety and practicality, the CASL technique is a 

promising methodology for the study of the issues raised by the baseline condition (see for 

example Abler et al. 2008; Beschoner et al. 2008; O'Gorman et al. 2006; Rao et al. 2007). 

An important issue in the design of any study is the way in which variance in the data 

arising from unknown variables or experimental error may be controlled to improve the 

capacity of the statistical test to detect the effect of interest. Understanding this aspect of 

study design requires, on the one hand, considering the formal aspects of the model, and on 

the other, knowledge about the magnitude and spatial distribution of undesired variance in the 

data. The issues discussed here apply to all designs that are formally identical to the baseline 

study, i.e. studies of individual variance where only one condition is measured, and there is no 

within-subjects explanatory or experimental variable. In contrast to most experimental 

studies, baseline studies focus on between-subjects variables such as belonging to a patient or 

control group, or any other variable measured on the individuals. 

The random effects model corresponding to the simple baseline design contains two 

sources of variance: acquisition-to-acquisition and subject-to-subject variation. In the 

following, our objective is the characterization of these  variance components in the perfusion 

images of a sample of 228 healthy young subjects. These two sources of variance may be of 

interest to experimenters, because they give indication of the gains in the precision of 

estimates obtained by increasing the duration of acquisition sessions (Snedecor and Cochran 

1967). Differences in these quantities in different parts of the brain determine differences in 

the power of statistical tests, and therefore of the regional sensitivity of the ASL technique. In 

particular, we will be concerned with showing the impact of the presence of large vessels in 

the variance of the perfusion signal, demonstrating the existence of a relationship between 

macroscopic anatomy and signal variance in the images obtained with this technique. 
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We will further explore the spatial characteristics of subject-to-subject variance through 

component analyses of the averages images in each subject (the input to the second-level 

analysis). This analysis will demonstrate the existence of components of variation related to 

the distribution of vascular territories, and the differential impact of global perfusion levels on 

white and grey matter. We will then show the relation between these components of variation 

and individual variables such as age and gender. 

A further issue about which we seek clarification is the impact of adjusting for global 

cerebral perfusion values (gCBF) by adding them as a covariate in the analysis (Friston et al. 

1990, Macey et al. 2004). Adjustment for gCBF is a pragmatic attempt to handle variance 

associated with a random effect of volumes and its interaction with a voxel factor without 

modeling this effect explicitly, which would involve abandoning the SPM modeling strategy. 

This procedure is designed to remove global perfusion signal changes that, by increasing the 

variance of the signal, can reduce the sensitivity of the statistical test (Arndt et al. 1996, 

Gavrilescu et al. 2002). While the literature on adjusting for gCBF levels is concerned with its 

impact on the within-subjects effects of experimental manipulations, we will be here 

specifically concerned with its impact on the inference about between-subjects variables, and 

will correspondingly attempt to identify the subject-to-subject variation removed by the 

adjustment. A case study of the association between regional perfusion levels and age will 

illustrate the effect of adjusting for gCBF levels in terms of its impact on separate components 

of variance. We will also show that gCBF levels commonly correlate with individual 

variables, so that the ensuing analyses (with and without adjustment) provide qualitatively 

different indications about the association between perfusion levels and the individual 

variable of interest. 
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Material and methods 

Recruitment 
Participants were recruited from local schools and university and by local announcements. 

Exclusion criteria were neurological or medical conditions, use of medication, or a history of 

mental illness, and subclinical structural abnormalities. The study is based on 228 right-

handed participants (101 males) aged between 17 and 52 years at the time of the scan (mean 

age 24.7, std. dev. 5.4) who gave informed consent. The study protocol was approved by the 

local ethical committee and was in compliance with national legislation and the Code of 

Ethical Principles for Medical Research Involving Human Subjects of the World Medical 

Association. 

Data acquisition 
All magnetic resonance imaging (MRI) data were obtained with a 3-Tesla Magnetom Allegra 

(Siemens, Erlangen, Germany) MRI system equipped with a head volume coil. All 

participants were scanned at the Department of Psychiatry of the University of Ulm. A 

standard T2-weighted structural brain scan from the clinical screening routine in use in our 

hospital (TR 4120, TE 82) was taken on all participants to exclude subclinical structural 

abnormalities. A continuous arterial spin-labeling technique was used as described in Wang et 

al. (2005). Interleaved images with and without labeling were acquired for 8 min (120 

acquisitions) by using a gradient-echo echo-planar imaging sequence with a field of view of 

22 cm. Image size was 64 × 64 × 15 voxels, slice thickness 6 mm with a gap of 1.5 mm, 

giving a voxel size of 3.44 × 3.44 × 7.50 mm. The images were acquired with an echo-planar 

imaging sequence (EPI) with TR 4000, TE 17, anterior-to-posterior phase encoding, a flip 

angle of 90°, and a bandwidth of 3005 Hz/Pixel. A delay of 1 sec was inserted between the 

end of the labeling pulse and image acquisition to reduce transit artifacts. The SPM2 package 

was used (Wellcome Department of Cognitive Neurology, London; online at 

http://www.fil.ion.ucl.ac.uk) for realignment and stereotactic normalization to an EPI 
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template (Montreal Neurological Institute, resampling size: 2 × 2 × 2 mm). Reconstruction of 

rCBF values was obtained using the Perf_resconstruct_V02 SPM add-on software by H. Y. 

Rao and J. J. Wang, from the Department of Radiology and Center for Functional 

Neuroimaging at University of Pennsylvania (online at 

http://www.cfn.upenn.edu/perfusion/software.htm). The software implements eq. (1) of Wang 

et al. (2003). The ‘simple subtraction’ method was used. All volumes were smoothed using an 

isotropic Gaussian kernel of full width half-maximum (FWHM) of 6 mm prior to the principal 

component analysis. An explicit mask was obtained by combining an a priori thresholded 

tissue probability maps provided by the SPM package at 0.25 for gray or white matter with 

another mask thresholding the standard deviation of the mean images to less than 25 (as 

described in the text). Furthermore, slices lower than z = −24 mm. were excluded, since very 

low slices have very large variance in our data (these slices are close to where the labeling 

pulse was given). We also excluded slices above z = 48 mm. to prevent lack of coverage of 

the top of the brain in some individuals to influence the outcome of the principal component 

analysis. 

Time-of-flight (TOF) angiography images were obtained from a subset of 42 

participants (13 males) aged between 18 and 52 (mean age 28, std. dev. 9). A T1-weighted 

imaging sequence was used with a TR 41, TE 4.92, flip angle 90, and bandwidth 110 

Hertz/Pixel. Image size was 512 × 640 × 56 voxels, slice thickness 1.8 mm with a gap of 18 

mm between slices. These parameters correspond to a standard clinical TOF image, with the 

exception that no saturation band was present in our sequence. This band is usually applied at 

the upper part of the cerebrum to suppress signal from venous sinuses, which is present in our 

images. These images were normalized to a template prepared as the mean of the original 

images. 
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Statistical analysis 
After preprocessing, standard ANOVA estimators in a one-way random effect model were 

used to compute the acquisition-to-acquisition and subject-to-subject variance components. 

Principal component analysis was carried out using standard methods, summarized in the 

Appendix of Viviani et al. (2005). Data were single-centered voxel by voxel, thus considering 

voxels to be ‘variables’ and the average individual volumes to be ‘observations’ in the usual 

principal component terminology (Jolliffe 1986). The principal component analysis delivers 

the spatial components (‘eigenimages’), and a principal component score, one for each 

volume. This score is the inner product between the eigenimage and the rCBF values in each 

voxel of the volume, and represents the extent to which each volume displays the pattern 

identified by the component. The correlation of gCBF, age, and gender of each average 

subject image with these the principal component scores therefore provides a summary 

measure of how the spatial patterns of variation of the components may be related to 

individual variables. 

In the analysis of the perfusion modeled as an effect of age, volumes were averaged in 

each individual to obtain an estimate of the baseline perfusion, which was entered at the 

‘second level’ of analysis to model subjects as a random factor. Because of the lack of 

temporal autocorrelation in the signal obtained with the simple subtraction method (Aguirre et 

al. 2002, Mumford et al. 2006), the individual averaging procedure yields valid tests and 

correct ANOVA estimates of variance components. When indicated, adjustment for the global 

signal level was obtained by including a centered covariate in the model containing global 

perfusion levels estimated as the average perfusion within the masked region. No scaling 

procedures such as ‘grand mean scaling’ were applied to the data. Second level statistical 

analysis was performed on these averaged volumes using a permutation method to obtain 

voxel-level corrected significance values (Holmes et al. 1996, Nichols and Holmes 2001) 
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robust relative to distributional assumptions and with good power (Nichols and Hayasaka 

2003). 

Results 
Figure 1 gives an idea of what these images look like, when taken from a 3T scanner (details 

on the acquisition methods are in the Material and methods section). On the left, an arbitrarily 

chosen single acquisition is displayed. Each of these images is reconstructed from two 

original echo-planar imaging (EPI) scans, one of which taken after a labeling pulse, which 

tags the blood in the neck before it is distributed to the brain. The reconstruction of regional 

perfusion is accomplished on the basis of a compartment model (Wang et al. 2003). The 

image of a single acquisition demonstrates the large amount of noise in these data, at least as 

obtained in our laboratory. The low signal-to-noise ratio justifies relatively large voxel sizes 

in the acquisition. In the centre of Figure 1, an average image computed from 8 min. of 

acquisitions from the same subject. Given the constraints imposed by the labeling techniques 

(two EPI scans at TR = 4 sec each), 60 rCBF images were acquired in this time interval. On 

the right, the average rCBF obtained from the images acquired in this way from all 228 

healthy adults in the sample of this study. 

FIGURE 1 ABOUT HERE 

Figure 1 shows the rCBF signal to be characterized by considerable instability at the edges 

and outside the brain. In the average perfusion images of a single individual (center), this 

instability is evident as a gross granularity of the signal at the brain edges. Figure 2 shows the 

standard deviation of these average perfusion images at three transversal slices, confirming 

the existence of high variance at the edges of the brain. This high variance at the edges is 

about one order of magnitude larger than within the brain, with the exception of some small 

brain structures (marked with red arrows in Figure 2), which are also characterized by high 

variance. Furthermore, within the brain the variance of the perfusion signal is smaller in white 

than in gray matter. 
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FIGURE 2 ABOUT HERE 

A possible concern regarding the high variance at the edges is that it may contaminate 

the cortical signal at the surface of the brain after smoothing. In the rest of this study, we 

masked the image at the edge using a threshold of a standard deviation of 25 ml dl−1 min−1, 

since our interest focuses on the variance of the signal arising from within the brain. 

The simple baseline study model 
As noted in the Introduction, the variance of Figure 2 may be decomposed into two sources: 

acquisition-to-acquisition and subject-to-subject variance. The former is the variance arising 

from differences between each acquisition due to unaccounted effects and experimental error, 

while the latter is constituted by variation in brain perfusion among individuals. Formally, in a 

sample of i = 1, 2, … a subjects, in each of which j = 1, 2, … n acquisitions were made (each 

obtained from two scans, with and without labeling pulse), the data may be modeled voxel by 

voxel as follows: 

 ij i ijy A ε= + ,  (1)

where yij is the preprocessed voxel signal, Ai is the perfusion signal in subject i, and εij is an 

experimental error term introduced in each acquisition. The signal in each subject Ai is 

modelled as a random variable with mean µ (the overall mean signal level) and variance 2
Aσ  

(the subject-to-subject variation), assumed to be independent of the variance of the 

experimental errors 2σ  (the acquisition-to-acquisition variation). Because of the simple 

balanced structure of this model, 2
Aσ  and 2σ  may be estimated from ordinary ANOVA mean 

sums of squares (Figure 3). If these sources of variance are normally distributed, these 

ANOVA estimates are also the restricted maximum likelihood estimates. 

FIGURE 3 ABOUT HERE 

As it is immediately clear from Figure 3, subject-to-subject and acquisition-to-

acquisition sources of variation are characterized by completely different spatial patterns. The 
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major pattern emerging from the subject-to-subject variance estimate of Figure 3 is increased 

variation in gray relative to white matter areas. Subject-to-subject variation is, therefore, an 

important source of the differences in variance between white and grey matter that were 

visible in Figure 2. Another noticeable feature of subject-to-subject variance is that rCBF 

appears to vary the most across individuals in the posterior part of the brain (cerebellum and 

posterior cortical areas, red arrows). 

In contrast, the acquisition-to-acquisition variance is characterized, on the one hand, by 

variation at the edges of the brain that was not removed by the mask, and on the other hand, 

by areas of high variation on the midline, in the insular region, and in the lower portion of the 

brain. These latter areas correspond to the small structures inside the brain that displayed 

larger variance in Figure 2. 

To better understand the origin of acquisition-to-acquisition variance, we acquired a 

smaller additional dataset of time-of-flight (TOF) angiography images (Figure 4). In these 

images, vessels are easily recognizable as brighter signal. One can see that the acquisition-to-

acquisition high variance of the small structures within the brain has its source in large 

vessels. At the base of the brain, one can recognize the middle cerebral artery stemming from 

the internal carotid, the posterior cerebral artery, and the posterior sagittal sinus. Close to the 

midline, after normalization the middle cerebral artery runs in about the same position in all 

subjects, but more laterally the arteries diverge forming a dispersion fan before bending 

backwards, reflecting individual variation in their precise course. All these structures are 

matched by areas of comparatively larger acquisition-to-acquisition variance. Also at higher 

slices (Figure 4, centre and right), one can see that the increased acquisition-to-acquisition 

variance at the midline and in the insular region corresponds to important vascular structures, 

such as the insular arteries, and arteries on the midline (frontal and anterior cerebral arteries 

anteriorly, the pericallosal artery, and the middle occipital and choroidal arteries posteriorly). 
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Also venous sinuses, such as the posterior sagittal and the rectal sinus, lead to higher 

acquisition-to acquisition variance. 

FIGURE 4 ABOUT HERE 

Some of the acquisition-to-acquisition variance visible in the bottom row of Figure 3, 

however, does not correspond to large vascular structures. This is the case for high variance 

regions at the edges of the brain, at the outer edge of the cerebellum and in the olfactory 

cortex, and in the posterior portion of the midline at z = 24 mm. 

Impact of different sources of variation on second-level analyses 
The ‘first’ and ‘second level’ approach to the estimation of the random effects model 

translates into averaging acquisitions in each individual for the first level step, before entering 

second level analysis. Let iA ⋅  denote this averaged subject signal. Using standard ANOVA 

theory (see for example Frackowiak et al. 2003), it may be shown that 

 ( ) 2 21Var( )i AE A
n

σ σ⋅ = + .  (2)

This equation shows that the variance of the averaged subject images iA ⋅  stems from both the 

acquisition-to-acquisition and the subject-to-subject sources of variance, even if the 

acquisition-to-acquisition variance is damped by the number of acquisitions. 

The relation between the two variance components 2
Aσ  and 2σ  of equation (2) is of help 

in estimating the relative effect of increasing the length of baseline acquisitions relative to 

increasing the number of subjects scanned in a simple baseline study (Snedecor and Cochran 

1967). By increasing the number of acquisitions n, the contribution of the acquisition-to-

acquisition variance to the variance of the average subject images iA ⋅  decreases by a factor 

1/n. This is highly desirable, since the variance of the iA ⋅ ’s accruing from 2σ  is assumed to 

be due to experimental error and will not be explained by between-subjects variables in the 

model. In the box plots on the left part of Figure 3, one can see that acquisition-to-acquisition 
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variance in most of the brain is one order of magnitude larger than subject-to-subject variance. 

In our data, n is 60, so that we may expect acquisition-to-acquisition variance in the average 

subject images iA ⋅ to range from about 2σ  = 20 to 2σ  = 38 (1200 to 2300 divided by 60) in 

most of the brain, compared to the 80-160 range of subject-to-subject variation (the 

underlying rCBF estimates are expressed in ml dl−1 min−1). Near large vessels the acquisition-

to-acquisition variance is even higher, ranging from 2σ  = 35 to 2σ  = 65. The relatively large 

variance contributed by acquisitions-to-acquisition variance means that it may pay off to 

increase the duration of the baseline experiment for longer than the 8 min. used here 

(assuming that the underlying state remains stable for these longer periods of time). An 

optimal tradeoff in the sample size cannot be set a priori since it requires assigning a cost to 

increasing the number of acquisitions and a cost to recruiting more subjects. 

The random effects model can also be used to obtain the precision of perfusion 

estimates. The expected variance of the estimated perfusion level in one voxel 
1

a
ii

y A⋅⋅ ⋅=
= ∑  is 

given by 

 
( )( )

2 2

Var AE y
a an
σ σ

⋅⋅ = + . (3)

To obtain an approximate confidence interval for an estimate of a change of perfusion levels 

yβ μ⋅⋅= − , the standardized perfusion levels estimates are modeled with the Student’s t 

distribution or, if the sample from which the estimates are taken is large enough, as a standard 

deviate z. Elementary sampling theory then provides the approximate number of subjects a or 

the number of scans n per subject required to estimate a change in perfusion with the desired 

precision (Snedecor 1946, pp. 456-458). Assuming our large-sample estimates 2ˆaσ  and 2σ̂  are 

good enough to approximate the variances that would be obtained, on average, in a new 

sample, the minimum required number of subjects a, given the number of acquisitions n, is 

given by: 



− 13 − 

 ( )2 2 1 2

2

ˆ ˆaz n
a

σ σ

β

−+
= , (4)

and the minimum n given a by: 

 2 2

2 2 2

ˆ
ˆa

zn
a z
σ

β σ
=

−
. (5)

If the desired precision is expressed as percentage change in perfusion levels δ, the preceding 

equations are modified by replacing β with 100yδ ⋅⋅ . 

Note that while it is always possible to improve the precision to any desired level by 

increasing the number of subjects in the sample, this will not in general be true for an increase 

of the number of acquisitions. Looking at equation (3), one can see that by changing the size 

of n one cannot compress the expected variance of y⋅⋅  below 2
A aσ . 

In the top row Figure 5, we show maps of the number of subjects required to detect a 

δ = 10% change in perfusion levels at the 5% confidence level (one-sided) in a sample of 60 

acquisitions per subject, corresponding to sessions lasting 8 min. Because precision is 

expressed as percentage change, the requirements on the sample are more exacting for the 

white matter compartment, where absolute perfusion levels are lower and the change to detect 

is smaller in absolute terms. Here, samples of 60 subjects or more are required. In the gray 

matter compartment, in contrast, 10% precision is reached in samples of 30 to 40 subjects. 

FIGURE 5 ABOUT HERE 

In the bottom row of the same figure, we show the number of acquisitions required to 

achieve the same precision in a sample of 40 subjects. One can see that there are patches of 

the image in the white matter compartment where a sample of 40 cannot achieve 10% 

precision, irrespective of the number of acquisitions (in white), due to large subject-by-subject 

variance 2
A aσ  relative to the required precision. Around these patches, the required number 

of acquisitions increases without bounds since the desired precision is almost entirely offset 
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by the subject-by-subject variance 
2
A aσ . In contrast, in gray matter 30 to 40 acquisitions 

suffice to reach this precision level, with the exception of the areas in the temporal lobe 

located in proximity of large vessels. 

Even if they both improve the precision of the estimate, it is important to note that 

increases of the sample size in acquisitions and in subjects are not entirely exchangeable. 

These increases involve changes in the representativeness of the sample for two dimensions of 

the underlying population that are entirely distinct. When baseline studies are used to 

investigate associations of perfusion levels with between-subjects variables, the systematic 

effects of the between-subjects variables explain part of the subject-to-subject variance, not 

part of the acquisition-to-acquisition (residual) variance (see Gelman and Hill 2007, pp. 263-

264; Raudenbush and Bryk 2006, pp. 20-21). Acquisition-to-acquisition variance, however, 

causes uncertainties in the estimates of the average subject images iA ⋅ ’s accounted for by the 

term 2 nσ  in equation (2). Hence, increasing the number of acquisitions improves the fit by 

increasing the precision of the estimate of the average subject images iA ⋅ ’s, while increasing 

the number of subjects improves power by increasing the degrees of freedom of the second-

level fit of the iA ⋅ ’s on the between-subjects variable. The implication of the model is that 2
Aσ  

contains variance that one is trying to explain, while 2σ  contains measurement error only, or 

the sum of innumerable effects that can be treated as random. For this reason, in the following 

we focus on the structure of subject-to-subject variance. 

Spatial covariation of averaged subject images 
The subject-to-subject variance component estimates displayed in Figure 3 provide no 

information on the way in which perfusion levels co-vary spatially across the brain. For 

example, even if it is clear that high variation characterizes most of the cortex, perfusion 

could be high in one cortical area and low in another in one subject, while in another subject 

the relation may be reversed. The net effect is that variation is high in both areas. The 
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alternative possibility is that some subjects have high signal, while other subjects low signal 

in all areas at the same time. This also results in high variation in the same cortical areas, but 

in each subject the signal is uniform, because it co-varies across voxels. 

To distinguish between these possibilities and characterize the spatial co-variance of the 

signal, we carried out a principal component analysis of the averaged subject images (Figures 

6 and 7). The scree plot of the eigenvalues, displayed in Figure 6, suggests that at least two 

components, explaining about 45% and 10% of the spatial variance, should be considered. 

The ‘eigenimage’ of the first component is of the same sign in the whole brain, capturing 

individual changes in the overall level of perfusion (Figure 7, top row). This component 

correlates very strongly gCBF (r = 0.999, p < 0.001). Furthermore, one can see that overall 

perfusion levels affect grey matter more than white matter, which is darker in the spatial map 

of Figure 7. This finding suggests that individual increases in gCBF translate in relatively 

higher perfusion values in the cortex and the basal ganglia, while the perfusion in the white 

matter is increased to a lesser degree. 

FIGURE 6 ABOUT HERE 

The ‘eigenimage’ of the second component (Figure 7, second row from top) 

demonstrates that the high intersubject variation in the posterior areas of the brain (previously 

detected in Figure 3, top row) is due to these regions being decoupled by the rest in terms of 

perfusion levels. The areas affected by this decoupling are those that are perfused by the 

posterior cerebral artery and its collaterals: the cerebellum, large part of the thalamus and 

some of the posterior striatum, the calcarine cortex and the medial part of the occipital cortex, 

the posterior cingulate and the adjacent medial portions of the parietal cortex. 

FIGURE 7 ABOUT HERE 

Even if they explain a relatively small portion of the overall variance in the principal 

component analysis, also the third and fourth components display a recognizable spatial 

pattern (Figure 7, lower half). The third component captures the lateralization of perfusion. 
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The fourth component contains variation with mostly the same spatial distribution as that 

arising from the course of large vessels. Like the third component, the fourth component 

shows also some lateralization. Especially the variance arising from the insular arteries, while 

present on both sides, is anticorrelated. The variance caused by large vessels may originate in 

acquisition-to-acquisition variance but, as we have seen in equation 2, the variance of the 

averaged baseline images is contaminated by this source of variance. 

FIGURE 8 ABOUT HERE 

Figure 8 displays the histograms of the first four component scores, which are the 

coefficients of the projection of the volumes on the direction in space of each component. The 

larger this coefficient, the more marked is the presence of the pattern of spatial distribution 

identified by each eigenimage. One can check that there are no extreme values that may 

determine alone the direction of any component. 

Spatial components and individual variables 
In studies of individual differences, between-subjects variables are correlated voxel by voxel 

with the observed average subject signal iA ⋅ , explaining some of the subject-to-subject 

variance 2
Aσ  contained in the variance of iA ⋅ . Given that the principal component analysis 

revealed the existence of a spatial structure of 2
Aσ , a question that arises naturally is the extent 

to which these patterns of variation correspond to variation associated with individual 

between-subject variables. To this end, we estimated the correlation between each component 

score and gCBF, age, and gender (see Methods for details), using a permutation technique to 

compute significance levels corrected for the multiple tests arising from the number of 

components tested (Table 1). 
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TABLE 1 ABOUT HERE 

FIGURE 9 ABOUT HERE 

The first component (Figure 9) shows an extremely strong correlation with gCBF, as 

already mentioned; gCBF correlates with no other component. The first component also 

negatively correlates with age (r = −0.17, p = 0.03). Given the strong correlation between this 

first component and gCBF, this finding shows that older adults are characterized by decreased 

cerebral blood flow values as a whole. 

The second component, which may reflect the vascular decoupling of the posterior 

cerebral artery from the rest of the brain, also correlates with age (r = 0.18, p = 0.02). The 

third component correlates with gender (r = 0.29, p < 0.001), suggesting an association 

between lateralization of perfusion and gender. Note that, with the exception of gCBF, all 

these correlations explain too small a portion of the variance identified by these components 

to conclude that they can be identified with the components themselves. 

The fourth component shows little correlation with individual covariates. This may be 

due to this component containing prevalently acquisition-to-acquisition variation, which 

arises within subjects, while individual covariates are between-subjects variables. However, 

there is a trend for a weak association with gender (r = 0.16, p = 0.05), suggesting higher 

variation in males. 

Impact of adjustment for global perfusion levels 
Because of the high association between the scores on the first component and gCBF levels, 

when the principal component analysis was carried out after adjusting for gCBF, components 

were obtained that were virtually identical to those of the unadjusted data, with the exception 

of the first component, which had simply disappeared. 

In our data one also finds that the statistical analysis is qualitatively changed by the 

adjustment for gCBF. This is the case because age competes with gCBF for explaining the 

variance captured by the first component (the amount of variance explained by these 
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individual variables may be obtained from Table 1 by squaring the correlation coefficients, 

since the correlations were computed separately). On its own, gCBF explains about 99% of 

this variance, while age independently explains 4% of it. Hence, some of the variance 

explained by gCBF must be shared with age. This is possible because age is itself correlated 

with gCBF (r = −0.17, z = −2.50, p = 0.006). Thus, the adjustment removes the variance in the 

data explained by age that loads on the first component, while leaving intact the variance in 

the second component. 

We illustrate here this effect in Figure 10, which shows the parametric maps of the 

correlation between average subject rCBF and age, with and without adjustment for gCBF, 

thresholded at a liberal level to allow appreciation of the differences in the estimated maps. 

The map for the analysis without gCBF adjustment reveals that age affects perfusion 

negatively across the cortex, but much more markedly in the prefrontal regions, reaching 

voxel-level corrected significance in the anterior medial prefrontal cortex (supplementary 

motor area, BA32,  x, y, z = 2, 12, 48, t = −5.6, p < 0.001, and pregenual cingulus, BA10-32, 

x, y, z = 2, 12, 48, t = −5.8, p < 0.001), in the lateral prefrontal cortex (BA44, x, y, z = 52, 20, 

38, t = −6.3, p < 0.001), but also in posterior regions such as BA40 in the parietal cortex (x, y, 

z = 58, −38, 48, t = −4.9, p = 0.006). There is little evidence of increases in perfusion in the 

brainstem and the thalamic region (x, y, z = 6, −16, −12, t = 2.8, p = 0.72). Here and in the 

territory of the posterior cerebral artery perfusion is increased, but not significantly. In 

contrast, the gCBF-corrected analysis reveals a relative hyperperfusion in this whole territory, 

especially marked in thalamic, subthalamic and mesencephalic regions (x, y, z = 6, −16, −12, 

t = 5.4, p = 0.01; x, y, z = 14, −8, 2, t = 5.1, p = 0.02). There is still evidence of localized 

hypoperfusion in the prefrontal regions, which reaches voxel-level corrected significance in 

the medial prefrontal cortex (BA44, x, y, z = 52, 20, 38, t = −6.5, p < 0.001), but no evidence 

of reduced perfusion in more posterior regions (all significance levels reported here are voxel-

level corrected; see the online supplementary data for the tabulation of the statistical analysis). 
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The persistence of a significant correlation between age and perfusion in the prefrontal region 

after adjustment suggests that the effect of age is not identical with the generic differences in 

cortical perfusion levels identified in the principal component analysis, but rather that it 

disproportionately affects the prefrontal cortex. 

FIGURE 10 ABOUT HERE 

Discussion 
The baseline study design investigated here is formally characterized by the absence of 

within-subjects experimental variables. The primary data brought to second-level analysis for 

statistical inference are not estimates of contrasts between experimental conditions at the first 

level (as is commonly the case in functional imaging studies), but average subject perfusion 

levels to be correlated with individual between-subjects variables of interest. This design 

typically applies to studies of brain perfusion at rest. However, especially in the PET 

literature, studies can also be found in which subjects were asked to perform one simple task 

during all acquisitions. Because they lack within-subjects variables, the design of these 

studies is formally the same as the one examined here, even if the substantive interpretation of 

the results might differ. 

This design typology contains two components of variance: subject-to-subject and 

acquisition-to-acquisition (residual). Attempts to reduce undesired variance can therefore be 

directed at either of these sources. In addition, experimenters may attempt to control variance 

by adjusting for global perfusion levels. It was shown that each of these sources of variance 

affect the data in different ways, and that the strategies to contain them are characterized by 

distinctive advantages and shortcomings. 

In our data, the acquisition-to-acquisition variance was particularly strong at the edges 

of the brain, where the compartment model used to estimate perfusion may not deliver 

meaningful results, but also in correspondence of anatomical structures such as large vessels 

and venous sinuses. Since acquisition-to-acquisition variance negatively affects statistical 
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tests in the form of uncertainty in the estimate of the average perfusion levels brought to 

second level, the power of tests for differences in perfusion in these regions, i.e. in the 

anterior portion of the medial face of the temporal lobe, in the insula (especially posteriorly), 

and in parts of the cerebellum, may be reduced. Furthermore, we found an area of high 

variance in the hemispheric fissure arising from the numerous vessels in this region. This 

large variance levels might reduce power for the medial aspect of the cerebral cortex if large 

smoothing kernels are used. 

The increased acquisition-to-acquisition variance near large vessels may be due to the 

1 sec delay used in this study, which may be not long enough to allow all label to flow into 

capillary and tissue. Further studies should investigate the effect of increasing delay in 

reducing this aspect of acquisition-to-acquisition variance. Alternatively, acquisition-to-

acquisition variance may be reduced by increasing the length of the measurement session, and 

this strategy appears to be especially meaningful if the regions where acquisition-to-

acquisition variance is high are of specific interest. However, in this case one must assume 

that the mental state underlying perfusion levels is not changed by longer sessions. 

An important shortcoming of the strategy of increasing the number of acquisitions is 

that it does not always replace the effect of increasing the number of subjects. Apart from the 

fact that one may be more interested in generalizing over subjects than over acquisitions, it 

was shown that the precision of the estimate cannot be compressed at arbitrarily low levels 

only by increasing session lengths. Our data showed that this may be a problem especially if 

one is interested in estimating perfusion at relative precision levels in the white matter. 

In the second part of the study, we investigated the variance of the average perfusion 

volumes, which mainly contains subject-to-subject variance, and the effect of adjusting for 

global perfusion levels. The principal component analysis identified the major spatial patterns 

in which these images differ from each other. By far the largest source of variation in this 

respect was related to global perfusion levels, and revealed that these changes affect grey 
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more than white matter. Because scores on this first component were virtually identical to 

estimated gCBF levels, adjusting for gCBF led to the removal of this large component, 

indicating that the potential increases in power brought about by the adjustment are 

considerable. 

Historically, the adjustment for gCBF through a covariate was justified by early reports 

showing that the global PET signal was essentially independent from regional PET signal 

changes arising from experimental manipulations (Friston et al. 1990, Ramsay et al. 1993). In 

the typical baseline study, there are no within-subjects experimental effects, while the 

variables of interest are between-subjects. Unfortunately, the case study of regression on age 

illustrates that there is no reason to assume these between-subjects variables to be 

uncorrelated with global perfusion levels, so that there may be genuine effects of interest in 

the correlation between gCBF and explanatory variables that are obliterated by the adjustment 

(see also Aguirre et al. 1998). Both analyses of the effect of age on rCBF, with and without 

adjustment, revealed different and potentially relevant aspects of the modulation of perfusion 

by age. 

We also identified three further components of variation that affect baseline perfusion. 

One affected the brainstem, the thalami, and posterior parts of the brain comprising the 

calcarine and occipital cortex. These areas correspond to the territory of the posterior cerebral 

artery, suggesting a partial decoupling across subjects in levels of perfusion of these areas. 

This differential pattern of perfusion may be explained by the fact that the supply of the 

posterior cerebral artery differs markedly from the supply of the other arterial vessels of the 

brain. The posterior cerebral artery largely receives its supply by the vertebral arteries, and for 

a smaller, variable part from the internal carotid artery through the posterior communicans 

arteries. In contrast, the rest of the brain is supplied by the internal carotid only. 

The effect of age in baseline metabolism or perfusion levels has been the subject of a 

considerable number of studies (see the reviews of Tumeh et al. 2007, Willis et al. 2002), 
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setting the stage for subsequent neuroimaging studies of the effect of age on performance 

(Rypma et al. 2006). Our data confirmed the findings reported in the literature. Our purpose 

was not to add to this considerable body of knowledge, but primarily that of illustrating the 

effects of adjusting for gCBF in the analysis. Findings based on the present sample, which is 

composed prevalently by young subjects, are not necessarily generalizable. 

In the course of the analysis of the subject-to-subject variation, we also demonstrated an 

association between the degree of asymmetry of hemispheric perfusion and gender. This 

finding parallels similar finding on the effect of gender in asymmetry in structural images 

(Good et al. 2001, Toga and Thompson 2003, Narr et al. 2007) and in diffusion tractography 

(Catani et al. 2007). With respect of the design of baseline studies, these observations suggest 

that gender and age may be included as a nuisance covariate in the statistical analysis. The 

significance of these correlations, however, was predicated on the large size of the sample of 

this study. The amount of total variance explained by these individual variables remains 

small, suggesting that including them as nuisance covariates in the statistical analysis is not 

mandatory in general. 
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Tables 
 

 

Table 1. Correlation between component scores and individual covariates 

 gCBF Age Gender 

Component 1 
r = 0.99, z = 57.9, 

p < 0.001 

r = −0.17, z = −2.62, 

p = 0.03 

r = 0.13, z = 1.92, 

p = 0.20 

Component 2 
r = 0.02, z =0.31, 

p = 0.99 

r = 0.18, z = 2.78, 

p = 0.02 

r = 0.01, z = 0.10, 

p = 0.99 

Component 3 
r = −0.01, z = −0.18, 

p = 0.99 

r = 0.06, z = 0.89, 

p = 0.84 

r = 0.29, z = 4.51, 

p < 0.001 

Component 4 
r ~ 0.00, z = 0.03, 

p ~ 1.00 

r = 0.04, z = 0.54, 

p = 0.97 

r = 0.16, z = 2.49, 

p = 0.05 

Explanation of symbols: z: Fisher’s z-transformation of correlation coefficient; p: two-tailed 

significance level, corrected for the three repeated tests for each component. 
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Figure legends 

Figure 1. From left to right: a single acquisition; the average perfusion in a single individual; 

and the overall average perfusion in the whole sample (Talairach coordinates: z = 0 mm). 

Data are in ml dl−1 min−1. Negative CBF perfusion estimates tend to occur at the edges of the 

brain as a result of noise in the acquisition process exerting its effect through the perfusion 

estimates of the compartment model. 

Figure 2. Standard deviation of average CBF images, computed from all 228 subjects in the 

sample. These images show that variance occurs at two orders of magnitude. Large variance 

(in yellow) is present at the edges of the brain and in correspondence of mall intracerebral 

structures, indicated with red arrows in the figure. Most of the brain parenchyma displays 

lower variance (in blue); within this area, one can easily distinguish white and grey matter. 

Figure 3. On the left, box plots of voxel variance levels in subject-to-subject (top) and 

acquisition-to-acquisition volumes (bottom). Outliers (values beyond 1.5 times the 

interquartile range) are not shown to avoid clutter. Brain images show voxel by voxel 

estimates of 2
Aσ , the subject-to-subject variance (top), and 2σ , the acquisition-to-acquisition 

variance (or modelled experimental error, bottom). Data were smoothed with a kernel of full-

width-half-maximum (FWHM) of 6 mm. 

Figure 4. Normalized TOF angiography images, showing areas where major vessels are 

located (brighter signal). The falciform structure within the brain parenchyma near the 

posterior edge of the brain (dark at z = 0 and 24) is a normalization artefact. 

Figure 5. Maps of required sample sizes in subjects (top row) and acquisitions (bottom row) 

required to achieve a precision of 10% in perfusion estimates. See text for details. 

Figure 6. Screeplot of the principal component analyses of the first ten components of the 

average baseline images. 

Figure 7. Principal components of the mean baseline images. The images are scaled to the 

same vector length of 1, and the sign of the signal is arbitrary. 
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Figure 8. Histograms of the first four component scores. The projection of volumes on the 

eigenimages is unitless. 

Figure 9. Plots illustrating the linear association between first component scores (in the 

ordinates) and gCBF (left), age (centre), and gender (right). The boxplot on the right is drawn 

at the lower and upper quartile values (boxes), with a line at the median value. The whiskers 

cover the extent of the rest of the data, with the exception of outliers (values beyond 1.5 times 

the interquartile range), which are marked with an ‘x’. 

Figure 10. Comparison of statistical parametric maps (thresholded at p = 0.01, uncorrected) 

for regression on age, adjusted for gender, without adjustment for gCBF (left), and with 

adjustment at second level (right). The lack of negative association between age and perfusion 

in the extreme frontopolar region, evident especially at z = −11 mm, is due to signal failure 

arising from a susceptibility artefact. 
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