1. Allgemeine Hinweise

1.1 Adresse und Dienstzeiten

Institut für Virologie Universitätsklinikum Ulm
Albert-Einstein-Allee 11
D-89081 Ulm
Tel. Sekretariat: 0731-500-65100
Fax.: 0731-500-65102

Durchwahl:
Prof. Dr. Th. Stamminger 65101*
Prof. Dr. D. Michel 65107*
Dr. K. Göhring 65115*
M. Just (Leit. MTA) 65111**
EDV-Raum, Materialannahme 65108, 65124
Serologie, PCR 65108
Zellkultur: 65138
E-Mail: Thomas.Stamminger@uniklinik-ulm.de
https://www.uniklinik-ulm.de/virologie.html

/ Beratung zur Anforderung von Untersuchungen
* Beratung zur Auslegung von Untersuchungsergebnissen

Laboröffnungszeiten:

| Montag bis Freitag | 07:30 – 16:30 Uhr |

Darüber hinaus kann in dringenden Fällen der diensthabende akademische Mitarbeiter/Laborleiter/Institutsleiter von 8:00 bis 22:00 Uhr und samstags und sonntags über das Notfall-Handy 0173 3492 493 erreicht werden.

Vorgehen nach Schnitt-/Stichverletzungen oder anderer Kontamination mit potentiell infektiösen humanen Körperflüssigkeiten (HIV-Exposition): siehe Intranet
Inhalt

1. Allgemeine Hinweise .. 1
 1.1 Adresse und Dienstzeiten ... 1

2. Untersuchungsanforderung .. 10
 2.1 Hinweise für Einsender ... 10
 2.1.1 Probengewinnung und Entnahmesysteme .. 10

3. Transport von Materialien ... 13
 3.1 Allgemein .. 13
 3.2 Kriterien des Labors für die Annahme und Zurückweisung von Proben 13

4. Analysendauer ... 15

5. Diagnostik von Virusinfektionen .. 16
 5.1 Einleitung ... 16
 5.2 Die Virusinfektionen ... 16
 5.3 Die Fragestellungen .. 16
 5.4 Klinische Manifestationen bei Virusinfektionen .. 17

6. Leistungsverzeichnis ... 28
 6.1 Diagnostisches Angebot (Testverfahren) .. 28

7. Erregerorientierte Informationen zu den Untersuchungsanforderungen 29
 7.1 Adenoviren (Adv) (Familie: Adenoviridae) ... 29
 7.1.1 Erreger und Infektion ... 29
 7.1.2 Symptome/Erkrankungen ... 30
 7.1.3 Diagnostische Methoden ... 30
 7.1.4 Untersuchungsinformationen und Materialien .. 31
 7.1.5 Virologische Interpretationen und klinische Bedeutung ... 32
 7.1.6 Besondere diagnostische Probleme .. 32
 7.1.7 Meldepflicht .. 32

 7.2 Astrovirus (HuAIV) (Familie: Astroviridae) ... 32
 7.2.1 Erreger und Infektion ... 32
 7.2.2 Symptome/Erkrankungen ... 33
 7.2.3 Diagnostische Methoden ... 34
 7.2.4 Untersuchungsinformationen und Materialien .. 34
 7.2.5 Virologische Interpretationen und klinische Bedeutung ... 34
 7.2.6 Besondere diagnostische Probleme .. 34
 7.2.7 Meldepflicht .. 34

 7.3 Bocaparvoviren (HBov) (Familie: Parvoviridae – Bocavirus) 35
 7.3.1 Erreger und Infektion ... 35
 7.3.2 Symptome/Erkrankungen ... 36
 7.3.3 Diagnostische Methoden ... 36
 7.3.4 Untersuchungsinformationen und Materialien .. 36
 7.3.5 Virologische Interpretationen und klinische Bedeutung ... 37
 7.3.6 Besondere diagnostische Probleme .. 37
7.3.7 Meldepflicht. ... 37

7.4 Coronaviren (CoV) (Familie: Coronaviridae). ... 37
7.4.1 Erreger und Infektion. .. 37
7.4.2 Symptome/Erkrankungen .. 39
7.4.3 Diagnostische Methoden .. 39
7.4.4 Untersuchungsisindikationen und Materialien .. 40
7.4.5 Virologische Interpretationen und klinische Bedeutung .. 41
7.4.6 Besondere diagnostische Probleme ... 41
7.4.7 Meldepflicht. ... 41

7.5 Denguevirus (Familie: Flaviviridae) ... 41
7.5.1 Erreger und Infektion. .. 41
7.5.2 Symptome/Erkrankungen .. 42
7.5.3 Diagnostische Methoden .. 42
7.5.4 Untersuchungsisindikationen und Materialien .. 43
7.5.5 Virologische Interpretationen und klinische Bedeutung .. 43
7.5.6 Besondere diagnostische Probleme ... 43
7.5.7 Meldepflicht. ... 44

7.6 Enteroviren (EV) (Familie: Picornaviridae) .. 44
7.6.1 Erreger und Infektion. .. 44
7.6.2 Symptome/Erkrankungen .. 46
7.6.3 Diagnostische Methoden .. 46
7.6.4 Untersuchungsisindikationen und Materialien .. 47
7.6.5 Virologische Interpretationen und klinische Bedeutung .. 47
7.6.6 Besondere diagnostische Probleme ... 47
7.6.7 Meldepflicht. ... 48

7.7 Epstein-Barr-Virus (EBV) (Familie: Herpesviridae - Gammaherpesvirinae) 48
7.7.1 Erreger und Infektion. .. 48
7.7.2 Symptome/Erkrankungen .. 49
7.7.3 Diagnostische Methoden .. 49
7.7.4 Untersuchungsisindikationen und Materialien .. 51
7.7.5 Virologische Interpretationen und klinische Bedeutung .. 51
7.7.6 Besondere diagnostische Probleme ... 51
7.7.7 Meldepflicht. ... 53

7.8 Frühsummer-Meningoenzephalitis (FSME)-Virus (Familie: Flaviviridae) .. 53
7.8.1 Erreger und Infektion. .. 53
7.8.2 Symptome/Erkrankungen .. 55
7.8.3 Diagnostische Methoden .. 55
7.8.4 Untersuchungsisindikationen und Materialien .. 55
7.8.5 Virologische Interpretationen und klinische Bedeutung .. 56
7.8.6 Besondere diagnostische Probleme ... 56
7.8.7 Meldepflicht. ... 56

7.9 Gelbfiebervirus (GFV) (Familie: Flaviviridae) ... 57
7.9.1 Erreger und Infektion. .. 57
7.9.2 Symptome/Erkrankungen .. 58
7.9.3 Diagnostische Methoden .. 58
7.9.4 Untersuchungsisindikationen und Materialien .. 59
7.9.5 Virologische Interpretationen und klinische Bedeutung .. 59
7.9.6 Besondere diagnostische Probleme ... 59
7.9.7 Meldepflicht. ... 59

7.10 Hantaviren (Familie: Bunyaviridae). ... 60
7.10.1 Erreger und Infektion .. 60

Bearbeiter*in: Dr. Gentner-Göbel, Eva
Freigeben*in: Prof. Dr. Stamminger, Thomas
ID: 22223
Revision: 09/12/09, 2022
Seite: 3 von 173

Ausgedruckt ist das Dokument eine unkontrollierte Kopie und unterliegt nicht dem Änderungsdienst.
Präanalytik-Handbuch ANL-5.5.1-2 OE

7.10.2 Symptome/Erkrankungen ... 61
7.10.3 Diagnostische Methoden ... 62
7.10.4 Untersuchungsinformationen und Materialien 62
7.10.5 Virologische Interpretationen und klinische Bedeutung 62
7.10.6 Besondere diagnostische Probleme .. 62
7.10.7 Meldepflicht ... 63

7.11 Hepatitis-A-Virus (HAV) (Familie: Picornaviridae - Hepatovirus) 63
7.11.1 Erreger und Infektion .. 63
7.11.2 Symptome/Erkrankungen .. 64
7.11.3 Diagnostische Methoden ... 64
7.11.4 Untersuchungsinformationen und Materialien 64
7.11.5 Virologische Interpretationen und klinische Bedeutung 65
7.11.6 Besondere diagnostische Probleme .. 65
7.11.7 Meldepflicht ... 65

7.12 Hepatitis-B-Virus (HBV) (Familie: Hepadnaviridae) 66
7.12.1 Erreger und Infektion .. 66
7.12.2 Symptome/Erkrankungen .. 67
7.12.3 Diagnostische Methoden ... 67
7.12.4 Untersuchungsinformationen und Materialien 68
7.12.5 Virologische Interpretationen und klinische Bedeutung 69
7.12.6 Besondere diagnostische Probleme .. 71
7.12.7 Meldepflicht ... 73

7.13 Hepatitis-C-Virus (HCV) (Familie: Flaviviridae - Hepacivirus) 73
7.13.1 Erreger und Infektion .. 73
7.13.2 Symptome/Erkrankungen .. 74
7.13.3 Diagnostische Methoden ... 74
7.13.4 Untersuchungsinformationen und Materialien 74
7.13.5 Virologische Interpretationen und klinische Bedeutung 74
7.13.6 Besondere diagnostische Probleme .. 75
7.13.7 Meldepflicht ... 75

7.14 Hepatitis-D-Virus (HDV) (subviroles Agens - Deltavirus) 76
7.14.1 Erreger und Infektion .. 76
7.14.2 Symptome/Erkrankungen .. 76
7.14.3 Diagnostische Methoden ... 77
7.14.4 Untersuchungsinformationen und Materialien 77
7.14.5 Virologische Interpretationen und klinische Bedeutung 77
7.14.6 Besondere diagnostische Probleme .. 78
7.14.7 Meldepflicht ... 78

7.15 Hepatitis-E-Virus (HEV) (verwandt mit Caliciviridae) 78
7.15.1 Erreger und Infektion .. 78
7.15.2 Symptome/Erkrankungen .. 79
7.15.3 Diagnostische Methoden ... 79
7.15.4 Untersuchungsinformationen und Materialien 79
7.15.5 Virologische Interpretationen und klinische Bedeutung 79
7.15.6 Besondere diagnostische Probleme .. 80
7.15.7 Meldepflicht ... 80

7.16 Herpes-Simplex-Virus (HSV) (Familie: Herpesviridae - Alphaherpesvirinae) 80
7.16.1 Erreger und Infektion .. 80
7.16.2 Symptome/Erkrankungen .. 81
7.16.3 Diagnostische Methoden ... 82
7.16.4 Untersuchungsinformationen und Materialien 82
7.16.5 Virologische Interpretationen und klinische Bedeutung 83
This page contains a table of contents for a medical document. The table lists various sections related to different viruses, including titles such as Humanes Herpesvirus 6 (HHV-6), Humanes Herpesvirus 7 (HHV-7), and Humanes Metapneumovirus (HMPV). Each section is followed by sub-sections detailing specific topics such as Erreger und Infektion, Symptome/Erkrankungen, Diagnostische Methoden, Untersuchungssubindikationen und Materialien, and Viologische Interpretationen und klinische Bedeutung. The table also includes page numbers for each section, ranging from 83 to 101. The document is likely part of a comprehensive handbook for virology.
7.23 Influenzavirus A, B, C (Familie: Orthomyxoviridae) .. 102
 7.23.1 Erreger und Infektion .. 102
 7.23.2 Symptome/Erkrankungen 103
 7.23.3 Diagnostische Methoden 103
 7.23.4 Untersuchungssindikationen und Materialien 104
 7.23.5 Virologische Interpretationen und klinische Bedeutung 105
 7.23.6 Besondere diagnostische Probleme 105
 7.23.7 Meldepflicht ... 105

7.24 Masernvirus (Familie: Paramyxoviridae - Morbilivirus) 106
 7.24.1 Erreger und Infektion .. 106
 7.24.2 Symptome/Erkrankungen 106
 7.24.3 Diagnostische Methoden 107
 7.24.4 Untersuchungssindikationen und Materialien 107
 7.24.5 Virologische Interpretationen und klinische Bedeutung 108
 7.24.6 Besondere diagnostische Probleme 109
 7.24.7 Meldepflicht ... 110

7.25 Mumpsivirus (Familie: Paramyxoviridae - Rubulavirus) 110
 7.25.1 Erreger und Infektion .. 110
 7.25.2 Symptome/Erkrankungen 111
 7.25.3 Diagnostische Methoden 111
 7.25.4 Untersuchungssindikationen und Materialien 111
 7.25.5 Virologische Interpretationen und klinische Bedeutung 111
 7.25.6 Besondere diagnostische Probleme 112
 7.25.7 Meldepflicht ... 112

7.26 Norovirus (Familie: Caliciviridae) ... 112
 7.26.1 Erreger und Infektion .. 112
 7.26.2 Symptome/Erkrankungen 113
 7.26.3 Diagnostische Methoden 113
 7.26.4 Untersuchungssindikationen und Materialien 113
 7.26.5 Virologische Interpretationen und klinische Bedeutung 113
 7.26.6 Besondere diagnostische Probleme 114
 7.26.7 Meldepflicht ... 114

7.27 Papillomaviren (HPV) (Familie: Papillomaviridae) 114
 7.27.1 Erreger und Infektion .. 114
 7.27.2 Symptome/Erkrankungen 115
 7.27.3 Diagnostische Methoden 115
 7.27.4 Untersuchungssindikationen und Materialien 116
 7.27.5 Virologische Interpretationen und klinische Bedeutung 116
 7.27.6 Besondere diagnostische Probleme 117
 7.27.7 Meldepflicht ... 117

7.28 Parainfluenzaviren (Familie: Paramyxoviridae) 117
 7.28.1 Erreger und Infektion .. 117
 7.28.2 Symptome/Erkrankungen 118
 7.28.3 Diagnostische Methoden 118
 7.28.4 Untersuchungssindikationen und Materialien 119
 7.28.5 Virologische Interpretationen und klinische Bedeutung 119
 7.28.6 Besondere diagnostische Probleme 119
 7.28.7 Meldepflicht ... 119

7.29 Parvovirus B19 (PVB19) (Familie: Parvoviridae - Erythrovirus) 120
 7.29.1 Erreger und Infektion .. 120
 7.29.2 Symptome/Erkrankungen 120
 7.29.3 Diagnostische Methoden 120

Bearbeiter*in Freigabe*in ID Revision Seite
Dr. Gennett-Göbel, Eva Prof. Dr. Stamminger, Thomas 22222 09/12.09.2022 6 von 172
7.29.4	Untersuchungsindikationen und Materialien ..	121
7.29.5	Virologische Interpretationen und klinische Bedeutung	122
7.29.6	Besondere diagnostische Probleme ...	123
7.29.7	Meldepflicht ..	123
7.30	Polyomaviren (JCV und BKV) [Familie: Polyomaviridae]	124
7.30.1	Erreger und Infektion ..	124
7.30.2	Symptome/Erkrankungen ..	124
7.30.3	Diagnostische Methoden ..	125
7.30.4	Untersuchungsindikationen und Materialien ..	125
7.30.5	Virologische Interpretationen und klinische Bedeutung	126
7.30.6	Besondere diagnostische Probleme ...	126
7.30.7	Meldepflicht ..	127
7.31	Poxviren: Molluscum-contagiosum-Virus (MCV) [Familie: Poxviridae - Molluscipoxvirus]	127
7.31.1	Erreger und Infektion ..	127
7.31.2	Symptome/Erkrankungen ..	128
7.31.3	Diagnostische Methoden ..	128
7.31.4	Untersuchungsindikationen und Materialien ..	128
7.31.5	Virologische Interpretationen und klinische Bedeutung	129
7.31.6	Besondere diagnostische Probleme ...	129
7.31.7	Meldepflicht ..	129
7.32.1	Erreger und Infektion ..	129
7.32.2	Symptome/Erkrankungen ..	130
7.32.3	Diagnostische Methoden ..	130
7.32.4	Untersuchungsindikationen und Materialien ..	131
7.32.5	Virologische Interpretationen und klinische Bedeutung	131
7.32.6	Besondere diagnostische Probleme ...	131
7.32.7	Meldepflicht ..	131
7.33	Respiratory-Syncytial-Virus (RSV) [Familie: Paramyxoviridae – Pneumoviridae]	131
7.33.1	Erreger und Infektion ..	131
7.33.2	Symptome/Erkrankungen ..	133
7.33.3	Diagnostische Methoden ..	133
7.33.4	Untersuchungsindikationen und Materialien ..	133
7.33.5	Virologische Interpretationen und klinische Bedeutung	134
7.33.6	Besondere diagnostische Probleme ...	134
7.33.7	Meldepflicht ..	134
7.34	Rhinoviren (HRV) [Familie: Picornaviridae – Enterovirus]	134
7.34.1	Erreger und Infektion ..	134
7.34.2	Symptome/Erkrankungen ..	135
7.34.3	Diagnostische Methoden ..	135
7.34.4	Untersuchungsindikationen und Materialien ..	136
7.34.5	Virologische Interpretationen und klinische Bedeutung	137
7.34.6	Besondere diagnostische Probleme ...	137
7.34.7	Meldepflicht ..	137
7.35	Rötelnvirus [Familie: Togaviridae - Rubivirus] ..	137
7.35.1	Erreger und Infektion ..	137
7.35.2	Symptome/Erkrankungen ..	138
7.35.3	Diagnostische Methoden ..	138
7.35.4	Untersuchungsindikationen und Materialien ..	139
7.35.5	Virologische Interpretationen und klinische Bedeutung	140
7.35.6	Besondere diagnostische Probleme ...	141
7.35.7	Meldepflicht ..	141
7.36 Rotaviren (Familie: Reoviridae) ... 141
 7.36.1 Erreger und Infektion ... 141
 7.36.2 Symptome/Erkrankungen ... 142
 7.36.3 Diagnostische Methoden .. 142
 7.36.4 Untersuchungsinformationen und Materialien 143
 7.36.5 Virologische Interpretationen und klinische Bedeutung............ 143
 7.36.6 Besondere diagnostische Probleme ... 143
 7.36.7 Meldepflicht ... 143

7.37 Sandfliegen-Fieber-Viren (Familie: Bunyaviridae - Phlebovirus) 143
 7.37.1 Erreger und Infektion ... 143
 7.37.2 Symptome/Erkrankungen ... 144
 7.37.3 Diagnostische Methoden .. 144
 7.37.4 Untersuchungsinformationen und Materialien 144
 7.37.5 Virologische Interpretationen und klinische Bedeutung............ 144
 7.37.6 Besondere diagnostische Probleme ... 145
 7.37.7 Meldepflicht ... 145

7.38 Saporivirus (Familie: Caliciviridae) .. 145
 7.38.1 Erreger und Infektion ... 145
 7.38.2 Symptome/Erkrankungen ... 146
 7.38.3 Diagnostische Methoden .. 146
 7.38.4 Untersuchungsinformationen und Materialien 146
 7.38.5 Virologische Interpretationen und klinische Bedeutung............ 146
 7.38.6 Besondere diagnostische Probleme ... 146
 7.38.7 Meldepflicht ... 146

7.39 Tollwutvirus (Familie: Rhabdoviridae - Lyssavirus) 147
 7.39.1 Erreger und Infektion ... 147
 7.39.2 Symptome/Erkrankungen ... 148
 7.39.3 Diagnostische Methoden .. 148
 7.39.4 Untersuchungsinformationen und Materialien 148
 7.39.5 Virologische Interpretationen und klinische Bedeutung............ 148
 7.39.6 Besondere diagnostische Probleme ... 149
 7.39.7 Meldepflicht ... 149

7.40 Toxoplasmose ... 150
 7.40.1 Erreger und Infektion ... 150
 7.40.2 Symptome/Erkrankungen ... 151
 7.40.3 Diagnostische Methoden .. 151
 7.40.4 Untersuchungsinformationen und Materialien 152
 7.40.5 Virologische Interpretationen und klinische Bedeutung............ 152
 7.40.6 Besondere diagnostische Probleme ... 153
 7.40.7 Meldepflicht ... 153

7.41 Varizella-Zoster-Virus (VZV) (Familie: Herpesviridae Alphaherpesvirinae – Varicellovirus) ... 154
 7.41.1 Erreger und Infektion ... 154
 7.41.2 Symptome/Erkrankungen ... 155
 7.41.3 Diagnostische Methoden .. 155
 7.41.4 Untersuchungsinformationen und Materialien 155
 7.41.5 Virologische Interpretationen und klinische Bedeutung............ 156
 7.41.6 Besondere diagnostische Probleme ... 156
 7.41.7 Meldepflicht ... 156

7.42 West-Nil-Virus (WNV) (Familie: Flaviviridae) 157
 7.42.1 Erreger und Infektion ... 157
 7.42.2 Symptome/Erkrankungen ... 158
 7.42.3 Diagnostische Methoden .. 158
7.42.4 Untersuchungsinformationen und Materialien..158
7.42.5 Virologische Interpretationen und klinische Bedeutung..159
7.42.6 Besondere diagnostische Probleme ..159
7.42.7 Meldepflicht ..159

7.43 Zика-Virus (Familie: Flaviviridae) ...159
7.43.1 Erreger und Infektion ...159
7.43.2 Symptome/Erkrankungen ..160
7.43.3 Diagnostische Methoden ..161
7.43.4 Untersuchungsinformationen und Materialien ..161
7.43.5 Virologische Interpretationen und klinische Bedeutung ..161
7.43.6 Besondere diagnostische Probleme ..162
7.43.7 Meldepflicht ..162

7.44 Zytomegalievirus (CMV) (Familie: Herpesviridae – Betaherpesvirinae)162
7.44.1 Erreger und Infektion ...162
7.44.2 Symptome/Erkrankungen ..163
7.44.3 Diagnostische Methoden ..163
7.44.4 Untersuchungsinformationen und Materialien ..165
7.44.5 Virologische Interpretationen und klinische Bedeutung ..165
7.44.6 Diagnostische Probleme ..166
7.44.7 Meldepflicht ..167

8. Anhang ...168
8.1 Meldewesen ..168
8.1.1 Siehe Meldepflichtige Krankheiten und Krankheitserreger des RKI168

8.2 Postversandvorschriften ..168

9. Literatur ..169

10. Abkürzungen ..170
2. Untersuchungsanforderung

2.1 Hinweise für Einsender

2.1.1 Probengewinnung und Entnahmesysteme

Hinweise für geeignete Entnahmesysteme zur Probengewinnung finden Sie in Abbildung 1 oder im Intranet unter Probengewinnung und Entnahmesysteme.

Interne Einsender: Hinweise und Anleitung für die beleglose Anforderung über das Medat-System.

Die beleglose Anforderung steht allen Stationsarbeitsplätzen im Klinikinformationssystem IS-H*MED zur Verfügung. Untersuchungsaufträge werden automatisch mit den aktuell gültigen Patientenstammdaten vorbelegt, die Ablauflogik des Anforderungsformulars sorgt dafür, dass unsinnige Anforderungen minimiert werden und dass genügend Proben für die gewünschten Untersuchungen bereitgestellt werden.

Externe Einsender: Hinweise und Anforderungsschein "Virologie"

Probenannahme für virologisch-diagnostische Fragestellungen

2 ml Viocult
oder physiologische Kochsalzlösung
Abstriche, Blascheninhalte,
Biopsate (PCR, Virus-Anzucht)
(keine Bakterien-Agar-Röhrchen verwenden!)
Lagerung: Gefühlt, <3 Tage bzw. Transport schnellst möglich

Urin-Becher
(Urin, BAL, Rachenspülung, Trachealsekret, u.a.)
Virus-Direktnachweis, Virus-Anzucht, PCR (CMV, BKV, HHV u.a.)
Respiratorische Erreger (Influenzavirus, RSV, Adenovirus, Parainfluenzavirus, CMV)

Absaug-Röhrchen

1-5 ml Liquor-Röhrchen
PCR (UC-Virus, HSV, VZV, Entero, EBV, CMV, HHV6)
autochthone Antikörper, Virus-Anzucht

7,5-10 ml EDTA-Blut-Röhrchen
PCR, HIV-quantitative RT-PCR, HIV-Resistenztestung,
pp65-Antigenämie, CMV-Resistenztestung (UL97/UL54)
Virus-Kurzkultur, Virus-Anzucht

5-10 ml Serum-Röhrchen, ohne Zusätze!
Serologie, HBV-PCR, HCV-
quantitative RT-PCR, PVBS9

Stuhl-Röhrchen
Adeno-, Rota-, Noro-, Astro-, Hepatitis A-/E-, Enterovirus

Abbildung 1: Entnahmesysteme
Untersuchungsmaterialien für respiratorische Erkrankungen

<table>
<thead>
<tr>
<th>Material oberer Respirationstrakt</th>
<th>Materialgewinnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nasenspülung
Von der Sensitivität her mit der NPA vergleichbar</td>
<td>In jedes Nasenloch 2 ml warmen isoloten gepufferten Salzlösung (Phosphatpuffer, PBS) eingeben und in ein steriles Gefäß absaugen.</td>
</tr>
<tr>
<td>Nasopharyngealer Abstrich
Wird üblicherweise bei Erwachsenen abgenommen</td>
<td>Tiefe Abstriche von beiden Nasenlöchern und dem hinteren Rachen mit sterillem Baumwolltupfer in 3 ml Virocut (VTM) geben. Keine Calcium Alginate-Tupfer und Tupfer mit Holzstäbchen verwenden, da Substanzen vorliegen können, die einige Viren inaktivieren und die PCR hemmen können! Abstrich-Tupfer nicht in Agar-Röhren geben!!</td>
</tr>
<tr>
<td>Rachenpülung
 Weniger sensitiv</td>
<td>10-20 ml sterile isotone gepufferte Salzlösung (Phosphatpuffer, PBS) aufnehmen, gurgeln und in steriles Gefäß geben.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Material unterer Respirationstrakt
(Bei Erkrankung der unteren Atemwege, bitte auch Material aus dem oberen Respirationstrakt einsenden!)</th>
<th>Materialgewinnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trachealsekret (TS)
Bei intubierten Patienten</td>
<td>4-10 ml sterile isotone gepufferte Salzlösung (Phosphatpuffer, PBS) in die endotracheale Röhre einfließen lassen und in ein steriles Gefäß absaugen.</td>
</tr>
<tr>
<td>Induziertes Sputum
Alternatives Material zur BAL bei geringer Kontamination mit Speichel</td>
<td>Entnahme am besten morgens. Mit steril, hypertonischen Salzlösung Mund und Rachen spülen, verwerfen und danach Sputum in steriles Gefäß husten.</td>
</tr>
<tr>
<td>Bronchoalveoläre Lavage (BAL)
Hoher diagnostischer Aussagewert, vor allem bei immunsupprimierten Patienten mit Lungeninfiltration (sensitiver als NPA!)</td>
<td>BAL-Flüssigkeit (5-10 ml), nativ in steriles Gefäß absaugen.</td>
</tr>
<tr>
<td>Transbronchiale Biopsie (TBB)
Kann zusätzlich zur BAL die diagnostische Aussage verbessern</td>
<td>Biopsie in Virocut (VTM) oder sterile isotone gepufferte Salzlösung (Phosphatpuffer, PBS) (5 ml) geben.</td>
</tr>
</tbody>
</table>
3. Transport von Materialien

3.1 Allgemein

Der klinikinterne Transport von Materialien von den Kliniken Safranberg und Michelsberg wird durch die Abt. II/2 des Universitätsklinikums organisiert.

Materialtransporte erfolgen zwischen allen Standorten unseres Klinikums und dem RKU. Sie dienen z. B. zur Beförderung von:
- Medizinischem Untersuchungsmaterial
- Sterilen Kleingütern
- Röntgenbildern
- Patientenakten (in verschlossenen Datenkoffern)
- Medikamenten
- Post

Die Materialtransporte werden nach festen Tourenplänen sowohl extern (im öffentlichen Straßenverkehr zwischen den Standorten) als auch intern (Rohrpost) in den Klinikumbereichen (zwischen Stationen, Funktionsbereichen und Laboren) durchgeführt.

Siehe Berufsgenossenschaft für Gesundheitsdienst und Wohlfahrtspflege (BGW)
- Patientenproben richtig versenden
- Gefährdungsbeurteilung

3.2 Kriterien des Labors für die Annahme und Zurückweisung von Proben

<table>
<thead>
<tr>
<th>Material</th>
<th>Probe ungeeignet *</th>
<th>Eingeschränkte Qualität der Probe **</th>
<th>Auffälligkeiten bei Aufarbeitung und Auswertung der Probe**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstrich</td>
<td>trocken (in Geze),</td>
<td>in zu viel Flüssigkeit (>5 ml)</td>
<td>keine Zellen, wenig Zellen, Plattenepithelzellen</td>
</tr>
<tr>
<td></td>
<td>in Agar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aszites</td>
<td>blutig</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BAL</td>
<td>blutig, wasserklar</td>
<td></td>
<td>keine Zellen, wenig Zellen</td>
</tr>
<tr>
<td>Biopsie</td>
<td>in Alkohol, Formalin</td>
<td>trocken</td>
<td></td>
</tr>
<tr>
<td>Bläscheninhalt</td>
<td>in zu viel Flüssigkeit (>5 ml)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EDTA-Blut, KM</td>
<td>geronnen, in Heparin (PCR)</td>
<td>leicht hämolytisch</td>
<td>kleine Koagel</td>
</tr>
<tr>
<td>DNA</td>
<td>kontaminiert</td>
<td>mehrtägige Lagerung bei RT</td>
<td>nicht wässrige Eigenschaften (Geruch, Farbe, Viskosität)</td>
</tr>
<tr>
<td>Liquor</td>
<td>blutig (Antikörper-Bestimmung)</td>
<td>wässrig, opaleszierend, trüb,</td>
<td>einrig, blutig, verdünnt</td>
</tr>
</tbody>
</table>

Bearbeiter*in: Dr. Gentner-Göbel, Eva
Freigabe*in: Prof. Dr. Stamminger, Thomas
ID: 22223
Revision: 005/12.09.2022
Seite: 13 von 173
<table>
<thead>
<tr>
<th>Probenname</th>
<th>Merkmale</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>MikroTrak</td>
<td>Abstrich auf normalem OT (a Feld)</td>
<td>keine Zellen, wenig Zellen</td>
</tr>
<tr>
<td>Muttermilch</td>
<td>in Transportmedium</td>
<td></td>
</tr>
<tr>
<td>Nasopharyngeales Sekret (NPS)</td>
<td>Wasserklar, blutig</td>
<td>wenig Zellen</td>
</tr>
<tr>
<td>Nativblut</td>
<td>gefroren, Leichenblut (bestimmte Geräte)</td>
<td>hämolytisch, lipämisch, Leichenblut (bestimmte Geräte)</td>
</tr>
<tr>
<td>Pleurapunktat</td>
<td>blutig</td>
<td></td>
</tr>
<tr>
<td>Rachenspülung (RSP)</td>
<td>blutig, wasserklar</td>
<td>stark schleimhaltig, keine Zellen, wenig Zellen, Plattenepithelzellen</td>
</tr>
<tr>
<td>Serum</td>
<td>fibrinhaltig, hämolytisch, lipämisch, trübe</td>
<td></td>
</tr>
<tr>
<td>Sputum (induziert)</td>
<td>blutig</td>
<td>stark schleimhaltig, keine Zellen, wenig Zellen</td>
</tr>
<tr>
<td>Stuhl</td>
<td>verpilzt</td>
<td>blutig, verdünnt</td>
</tr>
<tr>
<td>Trachealsekret</td>
<td>blutig</td>
<td>stark schleimhaltig, keine Zellen, wenig Zellen</td>
</tr>
<tr>
<td>Urin</td>
<td>wasserklar, blutig</td>
<td>stark trübe</td>
</tr>
</tbody>
</table>

* Das Material ist ungeeignet und wird ohne weitere Bearbeitung verworfen. Der Einsender wird telefonisch benachrichtigt.

** Die Untersuchung wird durchgeführt und die eingeschränkte Probenqualität wird auf dem Befund vermerkt.
4. Analysendauer

<table>
<thead>
<tr>
<th>Ergebnis am Probeneingangstag</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Untersuchung</td>
<td>bei Probeneingang bis</td>
</tr>
<tr>
<td>ELISA, PCR</td>
<td>8:00 Uhr</td>
</tr>
<tr>
<td>Hepatitis, HIV (Serologie Abbott)</td>
<td>13:00 Uhr</td>
</tr>
<tr>
<td>CMV-pp65-Antigennachweis</td>
<td>10:30 Uhr</td>
</tr>
<tr>
<td>Antigennachweis (Astro-, Rota-, Noro-, Adenoviren)</td>
<td>12:00 Uhr</td>
</tr>
<tr>
<td>Schnelltests (RSV-, Influenzaviren, Paul-Bunnell-Test)</td>
<td>16:00 Uhr</td>
</tr>
<tr>
<td>BAL von Knochenmarktransplantierten Patienten (Direktnachweis)</td>
<td>10:30 Uhr</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ergebnis bei Notfall</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Untersuchung</td>
<td>telefonische Rücksprache</td>
</tr>
<tr>
<td>HIV/Hepatitis</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ergebnis später als Eingangstag</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Untersuchung</td>
<td></td>
</tr>
<tr>
<td>Serologie</td>
<td></td>
</tr>
<tr>
<td>EBV-IFT (abhängig von der Serienlänge)</td>
<td>2-3 x pro Woche</td>
</tr>
<tr>
<td>Röteln-HHT (abhängig von der Serienlänge)</td>
<td>1-2 x pro Woche</td>
</tr>
<tr>
<td>KBR</td>
<td>1 x pro Woche</td>
</tr>
<tr>
<td>Molekularbiologische Virusnachweise</td>
<td></td>
</tr>
<tr>
<td>Genotypische Resistenzbestimmung: CMV</td>
<td>2-7 Werktagen</td>
</tr>
<tr>
<td></td>
<td>2-3 Werktagen nach HIV-quant.</td>
</tr>
<tr>
<td>Infektiositätsnachweise</td>
<td></td>
</tr>
<tr>
<td>Virus-Antigennachweis nach Kurzkultur (respir. Viren, Enteroviren)</td>
<td>24 Stunden</td>
</tr>
<tr>
<td>Virus-Antigennachweis nach Kurzkultur (CMV, HSV, VZV)</td>
<td>2 Tage</td>
</tr>
<tr>
<td>Virusisolierung</td>
<td>2 Tage - 6 Wochen</td>
</tr>
<tr>
<td>Phänotypische Resistenzbestimmung (HSV, CMV)</td>
<td>1 Woche nach erfolgreicher Virusanzucht</td>
</tr>
</tbody>
</table>
5. Diagnostik von Virusinfektionen

5.1 Einleitung

5.2 Die Virusinfektionen

5.3 Die Fragestellungen

Virologische Diagnostik dient der Beantwortung ganz verschiedener Fragen, und es gilt die jeweils optimalen Methoden einzusetzen:

- Besteht Immunität?
- Hat (bei persistierenden Infektionen) eine Primärinfektion irgendwann stattgefunden?
Präanalytik-Handbuch ANL-5.5.1-2 OE

- Besteht zurzeit eine aktive (Primär-) Infektion?
- Besteht zurzeit eine aktive Infektion nach Reaktivierung?
- Besteht Infektiosität?
- Besteht eine Therapieindikation?
- Zeigt sich virologisch ein Therapieerfolg (Abnahme der Viruslast)?
- Liegt eine Resistenz gegenüber antiviralen Substanzen vor?

In manchen Fällen muss darüber hinaus versucht werden, den Infektionszeitpunkt einzuggrenzen (z. B. Röteln- oder Zyтомегалievirus in der Schwangerschaft). Die Frage der Infektiosität kann sinnvoll naturgemäß nur unter Berücksichtigung möglicher Übertragungswege und/oder der Ausscheidungsdauer beantwortet werden.

5.4 Klinische Manifestationen bei Virusinfektionen

<table>
<thead>
<tr>
<th>Erkrankungen, Symptome, Syndrome</th>
<th>Viren (Anmerkungen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blepharitis, granulomatöse</td>
<td>Molluscum-contagiosum-Virus</td>
</tr>
<tr>
<td>Blepharitis, ulcerierend-nekrotisierende</td>
<td>Herpes-simplex-Virus (Primärinfektion)</td>
</tr>
<tr>
<td>Blepharokonjunktivitis</td>
<td>Varicella-Zoster-Virus (Zoster ophthalmicus)</td>
</tr>
<tr>
<td>Dakryozystitis, Kanalikulitis</td>
<td>Coxsackie-A-Viren</td>
</tr>
<tr>
<td></td>
<td>Herpes-simplex-Virus (Primärinfektion)</td>
</tr>
<tr>
<td></td>
<td>Varicella-Zoster-Virus</td>
</tr>
<tr>
<td></td>
<td>Epstein-Barr-Virus (Dakryoadenitis)</td>
</tr>
<tr>
<td></td>
<td>Mumpsivirus (Dakryoadenitis, auch chronisch)</td>
</tr>
<tr>
<td></td>
<td>Masernvirus (akut)</td>
</tr>
<tr>
<td>Konjunktivitis, Keratokonjunktivitis</td>
<td>Herpes-simplex-Virus (Primärinfektion)</td>
</tr>
<tr>
<td></td>
<td>Varicella-Zoster-Virus (Zoster ophthalmicus)</td>
</tr>
<tr>
<td></td>
<td>Adenoviren (v. a. Typen 8, 19, 37): hochkontagiös (Conjunctivitis epidemic)</td>
</tr>
<tr>
<td></td>
<td>Chlamydia trachomatis</td>
</tr>
<tr>
<td></td>
<td>Masernvirus (Koplik-Flecken konjunktival, gelegentlich purulent)</td>
</tr>
<tr>
<td></td>
<td>Influenzavirus</td>
</tr>
<tr>
<td></td>
<td>Parainfluenzavirus</td>
</tr>
<tr>
<td></td>
<td>Mumpsivirus</td>
</tr>
<tr>
<td></td>
<td>Adenoviren Typen 3, 4, 7, 14</td>
</tr>
<tr>
<td></td>
<td>Epstein-Barr-Virus</td>
</tr>
<tr>
<td></td>
<td>Molluscum contagiosum-Virus</td>
</tr>
<tr>
<td></td>
<td>Vaccinaviros (Papilla lacrimalis)</td>
</tr>
<tr>
<td>hämorrhagische Konjunktivitis</td>
<td>Enterovirus 70</td>
</tr>
<tr>
<td></td>
<td>Coxsackievirus A 24 (Variante)</td>
</tr>
<tr>
<td></td>
<td>Adenovirus Typ 11</td>
</tr>
<tr>
<td>pharyngokonjunktivales Fieber</td>
<td>(selten: VHF-Enzephalitis, Hanta-, Gelbfieber, Dengue-, Filoviren u. a.)</td>
</tr>
<tr>
<td>Keratitis</td>
<td>Adenoviren</td>
</tr>
<tr>
<td></td>
<td>Herpes-simplex-Virus</td>
</tr>
<tr>
<td></td>
<td>Varicella-Zoster-Virus</td>
</tr>
<tr>
<td></td>
<td>Masernvirus</td>
</tr>
<tr>
<td></td>
<td>Mumpsivirus</td>
</tr>
<tr>
<td></td>
<td>Rötelnvirus</td>
</tr>
<tr>
<td></td>
<td>Vaccinaviros (auch nekrotisierend)</td>
</tr>
</tbody>
</table>

Bearbeiter*in: Dr. Gentner-Göbel, Eva
Freigeber*in: Prof. Dr. Stamminger, Thomas
ID: 22223
Revision: 09/12/09, 2022
Seite: 17 von 173
Ausgedruckt ist das Dokument eine unkontrollierte Kopie und unterliegt nicht dem Änderungsdienst
<table>
<thead>
<tr>
<th>Krankheit</th>
<th>Viren (Anmerkungen)</th>
</tr>
</thead>
</table>
| Katarakt (kongenital) | Rötelnvirus (Embryopathie)
Zytomegalievirus
Varicella-Zoster-Virus |
| kongenitales Glaukom | Rötelnvirus (Buphthalmus)
Zytomegalievirus (bei AIDS)
humane Immundefizienzviren
Coxsackie-A-Viren
Epstein-Barr-Virus
Mumpsivirus
Riftval-Fieber-Virus |
| Retinitis | Herpes-simplex-Virus
Varicella-Zoster-Virus |
| akut nekrotisierende Retinitis | Varicella-Zoster-Virus
humane Immundefizienzviren
Epstein-Barr-Virus
Polioviren
Tollwutvirus |
| Augenmuskelparese (Ophthalmoplegie etc.) | Varicella-Zoster-Virus
humane Immundefizienzviren
Epstein-Barr-Virus
Polioviren
Tollwutvirus |

Bewegungsapparat, Muskulatur

<table>
<thead>
<tr>
<th>Erkrankungen, Symptome, Syndrome</th>
<th>Viren (Anmerkungen)</th>
</tr>
</thead>
</table>
| Arthritis, Arthralgie | Parvovirus B19
Rötelnvirus
Röteln-Impfvirus (v.a. bei erwachsenen Frauen)
Mumpsivirus (v.a. bei jüngeren Männern)
Denguevirus (”break bone fever”)
Varicella-Zoster-Virus
Hepatitis-B-Virus
Hantaviren
Gelbfiebervirus
HTLV-I (bestimmte Schulter)
Polioviren Typ 1 - 3, andere Enteroviren
Riftval-Fieber-Virus
Filoviren |
| Myalgie/Myositis/Morbus Bornholm | Enteroviren: Coxsackie-A-Viren Typen 1, 2, 4, 6, 9, 10, 16; Coxsackie-B-Viren Typen 1-6; ECHO-Viren
Hantaviren
Influenzaviren
humane Immundefizienzviren
Polioviren Typen 1 - 36
Hepatitis-A-Virus
Gelbfieber-, Dengue-, Filoviren |
| tropische spastische Paraparese, auch HTLV-assoziierte Myelopathie genannt | HTLV-I, evtl. HTLV-II |
| Post-Poliomyelitis-Syndrom | Polioviren Typ 1, 2, 3 (früher abgelaufen) |

Blut und Blutbestandteile, Blutbildung, Immunorgane

<table>
<thead>
<tr>
<th>Erkrankungen, Symptome, Syndrome</th>
<th>Viren (Anmerkungen)</th>
</tr>
</thead>
</table>
| Anämie | Parvovirus B19
Epstein-Barr-Virus |
| Leukopenie, Lymphopenie | Masern
Enteroviren
humane Immundefizienzviren
Gelbfieber-, Dengueviren
Filoviren (danach Leukozytose) |
<table>
<thead>
<tr>
<th>Symptom/Erkrankung</th>
<th>Viren/Anmerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thrombopenie</td>
<td>Zyto- und Megalievirus (bei Immunsupprimierten und konnatal Infizierten) Dengue-, Hantaviren, VHF-Viren</td>
</tr>
<tr>
<td>Panzytopenie</td>
<td>Zyto- und Megalievirus, Epstein-Barr-Virus, Parvovirus B19 (transiente aplastische Krise bei chronischer hämolytischer Anämie)</td>
</tr>
<tr>
<td>atypische mononukleäre Zellen im Blutbild</td>
<td>Epstein-Barr-Virus (infektiöse Mononukleose, Pfeiffer’sches Drüsenfieber), Zyto- und Megalievirus, Enteroviren, Parvovirus B19</td>
</tr>
<tr>
<td>Kälteagglutinine</td>
<td>Mycoplasma pneumoniae</td>
</tr>
<tr>
<td>Lymphadenopathie</td>
<td>humane Immundefizienzviren, HTLV, Affenpockenviren, Filoviren</td>
</tr>
<tr>
<td>vorwiegend generalisiert</td>
<td></td>
</tr>
<tr>
<td>vorwiegend lokализiert</td>
<td>Epstein-Barr-Virus (zervikal), Zyto- und Megalievirus, Rötelnvirus (nuchal)</td>
</tr>
<tr>
<td>Splenomegalie</td>
<td>Epstein-Barr-Virus, Zyto- und Megalievirus, Mumps- und Filoviren</td>
</tr>
<tr>
<td>Immunsuppression</td>
<td>Zyto- und Megalievirus, humane Immundefizienzviren, Masernvirus</td>
</tr>
<tr>
<td>Leukämie, Lymphom:</td>
<td>HTLV-I, Epstein-Barr-Virus, Epstein-Barr-Virus (bei HIV-Infizierten) humanes Herpesvirus 8</td>
</tr>
<tr>
<td>adulte T-Zell-Leukämie, Burkitt-Lymphom, B-Zell-Lymphome, intrazerebrale Lymphome, Body cavity-based lymphoma, primary effusion lymphoma, Castileman-Syndrom</td>
<td></td>
</tr>
<tr>
<td>Gerinnungsstörung, Hämorragien, hämorrhagische Fieber</td>
<td>Dengueviren (meist Zweitinfektion), Gelbfiebervirus, Krim-Kongo-Fieber-Virus (CCHF), Hantaviren, Riftval-Fieber-Virus (RVF), Lassavirus, Filoviren</td>
</tr>
</tbody>
</table>

Gastrointestinaltrakt

<table>
<thead>
<tr>
<th>Erkrankungen, Symptome, Syndrome</th>
<th>Viren (Anmerkungen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ösophagitis</td>
<td>Zyto- und Megalievirus (bei Immunsupprimierten) Herpes-simplex-Viren (bei AIDS) humane Immundefizienzviren</td>
</tr>
<tr>
<td>Gastritis</td>
<td>Adenovirus Typ 31 (Immunsupprimierte)</td>
</tr>
<tr>
<td>Enteritis/Colitis/Diarrhö</td>
<td>Rotaviren (Kleinkinder, nosokomial) Adenovirus Typ 31 (Immunsupprimierte), Typen 1, 2, 5, 6 (Kleinkinder), Typen 40, 41 (Säuglinge), Norwalkviren, Enteroviren, Coronaviren (?) Masernviren Coxiella burnetii (Q-Fieber)</td>
</tr>
</tbody>
</table>
Präanalytik-Handbuch ANL-5.5.1-2 OE

Hämorrhagische Enteritis/Colitis
- Zytomegalievirus (CMV) (bei Immunsuppression)
- VHF-Viren: Krim-Kongo-Fieber-, Lassa-, Riftval-Fieber-, Filoviren
- Gelbfieber-, Dengueviren
- Hantaviren

Invaginationsileus
- Adenoviren Typen 1, 2, 5 (Säuglinge)
- Rotavirus-Lebendimpfstoff

Proktitis
- Herpes simplex-Virus Typ 2 (HSV-2, -1) (bei AIDS)
- Zytomegalievirus (bei Immunsupprimierten)

Leber

<table>
<thead>
<tr>
<th>Erkrankungen, Symptome, Syndrome</th>
<th>Viren (Anmerkungen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>akute Hepatitis/Hepatomegalie</td>
<td>Hepatitis A-Virus</td>
</tr>
<tr>
<td></td>
<td>Hepatitis B-Virus</td>
</tr>
<tr>
<td></td>
<td>Hepatitis C-Virus</td>
</tr>
<tr>
<td></td>
<td>Hepatitis D-Virus</td>
</tr>
<tr>
<td></td>
<td>Hepatitis E-Virus</td>
</tr>
<tr>
<td></td>
<td>Zytomegalievirus (plus Splenomegalie; bei konnatal Infizierten oder Immunsupprimierten)</td>
</tr>
<tr>
<td></td>
<td>Epstein Barr-Virus</td>
</tr>
<tr>
<td></td>
<td>Adenoviren (bei Immunsupprimierten)</td>
</tr>
<tr>
<td></td>
<td>Varicella-Zoster-Virus</td>
</tr>
<tr>
<td></td>
<td>Mumpsivirus (plus Splenomegalie)</td>
</tr>
<tr>
<td></td>
<td>Herpes simplex-Virus (meist perinatal)</td>
</tr>
<tr>
<td></td>
<td>Parvovirus B19</td>
</tr>
<tr>
<td></td>
<td>Gelbfiebervirus</td>
</tr>
</tbody>
</table>

Reye-Syndrom (Enzephalopathie und fettige Leberdegeneration bei Kindern)
- Influenzaviren (v.a. nach Acetylsalicylsäure-Gabe)

chronische Hepatitis
- Hepatitis B-Virus
- Hepatitis C-Virus
- Hepatitis D-Virus

Zirrhose, primäres Leberzellsarkom (hepatozelluläres) Karzinom = Hepatom
- Hepatitis B-Virus, chronisch
- Hepatitis C-Virus, chronisch
- Hepatitis D-Virus

Hepatosplenomegalie
- *Coxiella burnetii (Q-Fieber)*
- Zytomegalievirus (bei intrauterin Infizierten)

Pankreas

<table>
<thead>
<tr>
<th>Erkrankungen, Symptome, Syndrome</th>
<th>Viren (Anmerkungen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pankreatitis</td>
<td>Mumpsivirus</td>
</tr>
<tr>
<td></td>
<td>Zytomegalievirus (bei AIDS)</td>
</tr>
</tbody>
</table>

Zerstörung der Inselzellen, dadurch Diabetes mellitus (Typ 1)
- Mumpsivirus
- Enteroviren
- Rötelnvirus (konnatale Infektion)

Geschlechtsorgane

<table>
<thead>
<tr>
<th>Erkrankungen, Symptome, Syndrome</th>
<th>Viren (Anmerkungen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prostatitis</td>
<td>Herpes-simplex-Virus Typ 2 (1) (HSV-2)</td>
</tr>
</tbody>
</table>

benigne Tumoren der Genitalschleimhaut (Warzen, Kondylome)
- Molluscum-contagiosum-Viren
- humane Papillomaviren Typen 6, 11, 42, 43, 44 und andere ("Niedrigrisiko"-Typen)

maligne Tumoren der Genitalschleimhaut (intraepithelia Neoplasien)
- humane Papillomaviren Typen 16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 68 und andere ("Hoherisiko"-Typen)
<table>
<thead>
<tr>
<th>Erkrankungen, Symptome, Syndrome</th>
<th>Viren (Anmerkungen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Symptomatik je nach Erreger und Stadium)</td>
<td>Hepatitis B-Virus human Immundefizienzviren Zytomegalievirus Hepatitis C-Virus HTLV Marburgvirus (Rekonvaleszenzphase) Ebola Virus (Rekonvaleszenzphase)</td>
</tr>
</tbody>
</table>

Haut und Schleimhaut: lokализierte, nicht vesikuläre Effloreszenzen

<table>
<thead>
<tr>
<th>Erkrankungen, Symptome, Syndrome</th>
<th>Viren (Anmerkungen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molluscum contagiosum (giganteum)</td>
<td>Molluscum-contagiosum-Virus</td>
</tr>
<tr>
<td>Papeln</td>
<td>Orthovirus</td>
</tr>
<tr>
<td>Warzen</td>
<td>humane Papillomviren</td>
</tr>
<tr>
<td>Epidermodysplasia verruciformis (Präkanzerose, genetisch bedingt)</td>
<td>humane Papillomaviren Typen 5, 8, 9 und andere</td>
</tr>
<tr>
<td>Keratosen (Karzinome in situ)</td>
<td>humane Papillomaviren Typen 2, 4, 41 und andere</td>
</tr>
<tr>
<td>Kaposi-Sarkom</td>
<td>humanes Herpesvirus 8</td>
</tr>
<tr>
<td>T-Zell-Lymphom</td>
<td>HTLV-I, HTLV-II (Mycosis fungoides?)</td>
</tr>
</tbody>
</table>

Haut und Schleimhaut: lokализierte, primär vesikuläre Effloreszenzen

<table>
<thead>
<tr>
<th>Erkrankungen, Symptome, Syndrome</th>
<th>Viren (Anmerkungen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Herpes labialis</td>
<td>Herpes-simplex-Virus Typ 1 (HSV-1)</td>
</tr>
<tr>
<td>Herpes genitalis</td>
<td>Herpes-simplex-Virus Typ 2 (HSV-2)</td>
</tr>
<tr>
<td>Ekzema herpeticum</td>
<td>Herpes-simplex-Virus Typ 1 (HSV-1)</td>
</tr>
<tr>
<td>Vesikel genabelt, gekammert</td>
<td>Vaccinia virus (Laborpersonal)</td>
</tr>
<tr>
<td></td>
<td>tierische Pockenviren</td>
</tr>
</tbody>
</table>

Exantheme im Rahmen generalisierter Virusinfektionen: primär makulöse Effloreszenzen

<table>
<thead>
<tr>
<th>Erkrankungen, Symptome, Syndrome</th>
<th>Viren (Anmerkungen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>erythematöse Exantheme/Enantheme</td>
<td>Parovirus B19 (Erythema infectiosum, "gloves and socks"-Syndrom) humane Herpesviren 6, 7 (Exanthema subitum) Masernvirus Enteroviren: Coxsackie A und B, ECHO-Viren Rötelnvirus Denguevirus humane Immundefizienzviren (akutes retrovirales Syndrom) Filoviren</td>
</tr>
</tbody>
</table>

Exantheme im Rahmen generalisierter Virusinfektionen: primär vesikuläre Effloreszenzen

<table>
<thead>
<tr>
<th>Erkrankungen, Symptome, Syndrome</th>
<th>Viren (Anmerkungen)</th>
</tr>
</thead>
</table>
Präanalytik-Handbuch ANL-5.5.1-2 OE

Institut für Virologie

<table>
<thead>
<tr>
<th>Herpangina (meist bei Kindern)</th>
<th>Enteroviren: Coxsackie-A-Viren Typen 1 - 10, 16, 22, Coxsackie-B-Viren Typen 1 - 5, ECHO-Viren Typen 9, 11, 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vesikel, generalisiert</td>
<td>Varicella-Zoster-Virus (Vanzellen, selten Zoster generalisatus bei Immunsupprimierten)</td>
</tr>
<tr>
<td></td>
<td>Herpes-simplex-Virus Typ 1 (2) (bei Immunsupprimierten)</td>
</tr>
<tr>
<td></td>
<td>Affenpockenvirus (monomorph, oft hämorrhagisch)</td>
</tr>
</tbody>
</table>

Sonstige Hautmanifestationen im Rahmen generalisierter Virusinfektionen

<table>
<thead>
<tr>
<th>Erkrankungen, Symptome, Syndrome</th>
<th>Viren (Anmerkungen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desquamation</td>
<td>Masernvirus (Spätstadium)</td>
</tr>
<tr>
<td></td>
<td>Filoviren (Rekonvaleszente)</td>
</tr>
<tr>
<td>seborrhoisches Ekzem (Cutis sicca)</td>
<td>humane Immundefizienviren</td>
</tr>
<tr>
<td>Petechien/Purpura, im Extremfall</td>
<td>Dengue-, Gelbfiebervirus</td>
</tr>
<tr>
<td>Ekchymosen</td>
<td>Hepatitis-C-Virus</td>
</tr>
<tr>
<td></td>
<td>VHF-Viren: Hantav-, Filo-, Krim-Kongo-Fieber-Viren (CCHF)</td>
</tr>
<tr>
<td></td>
<td>Hepatitis-B-Virus (selten)</td>
</tr>
<tr>
<td>Ikterus</td>
<td>siehe unter Hepatitis</td>
</tr>
</tbody>
</table>

Herz und Gefäße

<table>
<thead>
<tr>
<th>Erkrankungen, Symptome, Syndrome</th>
<th>Viren (Anmerkungen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myokarditis</td>
<td>Enteroviren: Coxsackie A und B, ECHO-Viren, Polioviren</td>
</tr>
<tr>
<td></td>
<td>Influenza A-Viren (im weiteren Krankheitsverlauf)</td>
</tr>
<tr>
<td></td>
<td>Mumpsvirus</td>
</tr>
<tr>
<td></td>
<td>Parvovirus B19</td>
</tr>
<tr>
<td></td>
<td>Epstein-Barr-Virus</td>
</tr>
<tr>
<td></td>
<td>Adenoviren</td>
</tr>
<tr>
<td></td>
<td>Hantaviren</td>
</tr>
<tr>
<td></td>
<td>FSME-Virus (Begleitmyokarditis)</td>
</tr>
<tr>
<td>Perikarditis</td>
<td>Enteroviren</td>
</tr>
<tr>
<td></td>
<td>Lassavirus</td>
</tr>
<tr>
<td></td>
<td>Influenzaviren</td>
</tr>
<tr>
<td>Bradykardie</td>
<td>Filoviren</td>
</tr>
<tr>
<td></td>
<td>Gelbfiebervirus (bei hohem Fieber = Farget-Zeichen)</td>
</tr>
<tr>
<td>angeborene Herzfehler</td>
<td>Rötelnivirus (intrauterin erworben)</td>
</tr>
<tr>
<td>Vaskulitis</td>
<td>Hepatitis-B-Virus</td>
</tr>
<tr>
<td></td>
<td>Parvovirus B19</td>
</tr>
<tr>
<td>Atherosklerose (hypothetische Rolle)</td>
<td>Zytomegalievirus</td>
</tr>
<tr>
<td></td>
<td>Chlamydia pneumoniae</td>
</tr>
<tr>
<td>Hypertonie</td>
<td>Hantaviren (Stadium der Oligurie)</td>
</tr>
<tr>
<td>Hypotonie</td>
<td>Hantaviren (Schockstadium)</td>
</tr>
<tr>
<td></td>
<td>Tollwutvirus (extreme Blutdruckschwankungen)</td>
</tr>
<tr>
<td></td>
<td>Gelbfiebervirus (Schockstadium)</td>
</tr>
<tr>
<td></td>
<td>alle Viren hämorrhagischer Fieber (Schockstadium)</td>
</tr>
</tbody>
</table>

Ohren

<table>
<thead>
<tr>
<th>Erkrankungen, Symptome, Syndrome</th>
<th>Viren (Anmerkungen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Innenohrdefekte (Hörstörungen)</td>
<td>Zytomegalievirus (intrauterine Infektion)</td>
</tr>
<tr>
<td></td>
<td>Rötelnivirus (konatale Infektion)</td>
</tr>
<tr>
<td></td>
<td>Mumpsvirus (überstandene Infektion)</td>
</tr>
<tr>
<td></td>
<td>Lassavirus (überstandene Infektion)</td>
</tr>
<tr>
<td>Otitis media</td>
<td>Influenza-A-Viren (bei Kindern)</td>
</tr>
<tr>
<td></td>
<td>Parainfluenzaviren</td>
</tr>
<tr>
<td></td>
<td>Respiratory Syncytial Virus</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bearbeiter*in</th>
<th>Freigeber*in</th>
<th>ID</th>
<th>Revision</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Gentner-Göbel, Eva</td>
<td>Prof. Dr. Stamminger, Thomas</td>
<td>22222</td>
<td>005/12.09.2022</td>
<td>22 von 373</td>
</tr>
</tbody>
</table>

Ausgedruckt ist das Dokument eine unkontrollierte Kopie und unterliegt nicht dem Änderungsdienst.
<table>
<thead>
<tr>
<th>Erkrankungen, Symptome, Syndrome</th>
<th>Viren (Anmerkungen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nase</td>
<td></td>
</tr>
<tr>
<td>Rhinitis</td>
<td>Rhinoviren Typen 1 - 102</td>
</tr>
<tr>
<td></td>
<td>Coxsackie-A-Viren Typen 9, 10, 21, 24</td>
</tr>
<tr>
<td></td>
<td>Coxsackie-B-Viren Typen 1 - 5</td>
</tr>
<tr>
<td></td>
<td>ECHO-Viren</td>
</tr>
<tr>
<td></td>
<td>Enteroviren 68, 74</td>
</tr>
<tr>
<td></td>
<td>Coronaviren</td>
</tr>
<tr>
<td></td>
<td>Respiratory-Syncytial-Virus (RSV) (vorwiegend ältere Kinder)</td>
</tr>
<tr>
<td>Nasen-, Nasennebenhöhlen-Karzinome</td>
<td>humane Papillomaviren Typ 57</td>
</tr>
<tr>
<td>Nasopharynxkarzinom (NPC)</td>
<td>Epstein-Barr-Virus (EBV)</td>
</tr>
<tr>
<td>Mundhöhle, Rachen, Hals</td>
<td></td>
</tr>
<tr>
<td>Enanthem</td>
<td>Masernvirus</td>
</tr>
<tr>
<td></td>
<td>Filoviren</td>
</tr>
<tr>
<td>Gingivostomatitis</td>
<td>Herpes-simplex-Virus Typ 1 (2)</td>
</tr>
<tr>
<td></td>
<td>Coxsackie-A-Virus</td>
</tr>
<tr>
<td>orale Papillome</td>
<td>humane Papillomaviren Typen 6, 11 (bei HIV-Infizierten Typen 7, 13 u. a.)</td>
</tr>
<tr>
<td>oropharyngale Karzinome (Tonsil)</td>
<td>humane Papillomaviren Typen 7, 11, 16, 33</td>
</tr>
<tr>
<td>Tonsillitis</td>
<td>Epstein-Barr-Virus</td>
</tr>
<tr>
<td></td>
<td>Zytomegalievirus</td>
</tr>
<tr>
<td></td>
<td>humane Immundefizienzviren</td>
</tr>
<tr>
<td>Parotitis</td>
<td>Mumpsivirus (Parotitis epidemica)</td>
</tr>
<tr>
<td></td>
<td>Zytomegalievirus</td>
</tr>
<tr>
<td></td>
<td>Enteroviren</td>
</tr>
<tr>
<td>Thyreoiditis</td>
<td>Mumpsivirus</td>
</tr>
<tr>
<td>Nervensystem</td>
<td></td>
</tr>
<tr>
<td>Meningitis, meningitisreizung,</td>
<td>Enteroviren: Coxsackie A und B, ECHO-Viren, Polioviren, Enterovirus 71</td>
</tr>
<tr>
<td>Meningismus</td>
<td>Mumpsivirus</td>
</tr>
<tr>
<td></td>
<td>Adenoviren</td>
</tr>
<tr>
<td></td>
<td>Masernvirus</td>
</tr>
<tr>
<td></td>
<td>FSME-Virus</td>
</tr>
<tr>
<td></td>
<td>Epstein-Barr-Virus</td>
</tr>
<tr>
<td></td>
<td>Herpes-simplex-Virus Typ 2</td>
</tr>
<tr>
<td></td>
<td>Sandfliegen-Fieber-Viren (Toskana/Neapel/Sizilien)</td>
</tr>
<tr>
<td></td>
<td>Hantaviren</td>
</tr>
<tr>
<td></td>
<td>Japan-Enzephalitis-Virus (JEV)</td>
</tr>
<tr>
<td></td>
<td>humane Immundefizienzviren</td>
</tr>
<tr>
<td></td>
<td>Parovirus B19</td>
</tr>
<tr>
<td></td>
<td>humane Herpesvirus 6 (7?)</td>
</tr>
<tr>
<td></td>
<td>Rotenirus</td>
</tr>
<tr>
<td></td>
<td>Denguevirus</td>
</tr>
<tr>
<td></td>
<td>Rifttal-Fieber-Virus</td>
</tr>
<tr>
<td>Enzephalitis, Meningoenzephalitis,</td>
<td>Herpes-simplex-Virus Typ 1 (2) (oft mit hirnorganischen Anfällen)</td>
</tr>
<tr>
<td>Enzephalomyelitis (akut)</td>
<td>Varicella-Zoster-Virus</td>
</tr>
<tr>
<td></td>
<td>Zytomegalievirus (bei Immunsuppression, AIDS)</td>
</tr>
<tr>
<td></td>
<td>FSME-Virus</td>
</tr>
</tbody>
</table>

Bearbeiter*in: Dr. Gentner-Göbel, Eva
Freigabe: Prof. Dr. Stamminger, Thomas
ID: 22223
Revision: 005/12.09.2022
Seite: 23 von 173
Präanalytik-Handbuch ANL-5.5.1-2 OE

Institut für Virologie

Masernvirus
Enterovirus 71
humanes Immunodefizienzvirus
Adenoviren
Tollwutvirus
Japan-Enzephalitis-Virus
Polioviren Typen 1-3
Vacciniavirus
Herpes-B-Virus (Affe)
HTLV
Lassavirus

chronische Enzephalitis, Enzephalopathie
JC-Viren (progressive multifokale Leukenzephalopathie, bei Immunsupprimierten)
** humane Immunodefizienzviren**
Prionen (Jakob-Creutzfeld-Krankheit)

progressive Panenzephalitis
Masernvirus (SSPE)
Rötelnvirus

Reye-Syndrom (Enzephalopathie und fettige Leberdegeneration bei Kindern)
Influenzaviren (v.a. nach Acetylsalicylsäure-Gabe)

Myelitis
FSME-Virus
Enteroviren
Epstein-Barr-Virus
humane Immunodefizienzviren
Filloviren

transverse Myelitis
Zytomegalievirus
Varicella-Zoster-Virus
Herpes-simplex-Virus Typ 2

Poliomyelitis
Myelopathie
Enteroviren, v.a. Poliovirus Typ 1, 2, 3
HTLV-I (TSP/HAM)

Polyradikuloneuritis (Guillain-Barré-Syndrom, GBS), meist postinfektiös nach akuten Infektionen durch:
Zytomegalievirus
Epstein-Barr-Virus
Influenza-A-Virus
FSME-Virus
humane Immunodefizienzviren
Mumpsivirus
Herpes-simplex-Viren (HSV-1, -2)

Parese:
Hirnnerven
Polioviren Typen 1-3
FSME-Virus
humane Immunodefizienzviren

Fazialisparese/Hörsturz
Varicella-Zoster-Virus
Mumpsivirus
FSME-Virus

periphere Nerven
humane Immunodefizienzviren
HTLV-I (HTLV-II)
Japan-Enzephalitis-Virus (JEV)

Niere, Harnwege, Nebenniere

Erkrankungen, Symptome, Syndrome
Viren (Anmerkungen)

Glomerulonephritis
Hepatitis-B-Virus (bei Kindern)
Hepatitis-C-Virus

Nephritis
Adenoviren (vor allem nach Nierentransplantation)
Zytomegalievirus (vor allem nach Nierentransplantation)

akutes Nierenversagen, Oligurie
Hantaviren
Lassavirus

Bearbeiter*in: Dr. Gentner-Göbel, Eva
Freigeberr*in: Prof. Dr. Stamminger, Thomas
ID: 22223
Revision: 005/12.09.2022
Seite: 24 von 373

Ausgedruckt ist das Dokument eine unkontrollierte Kopie und unterliegt nicht dem Änderungsdienst
<table>
<thead>
<tr>
<th>Erkrankungen, Symptome, Syndrome</th>
<th>Viren (Anmerkungen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>akuter respiratorischer ("grippaler") Infekt ("common cold")</td>
<td>Respiratory-Syncytial-Virus, Rhinoiren, Enteroviren, Coronaviren, Parainfluenzavirus Typen 1-4, Adenoviren Typen</td>
</tr>
<tr>
<td>echte Virusgrippe</td>
<td>Influenza-Viren A, B, selten C</td>
</tr>
<tr>
<td>Laryngitis (Pseudo-Krupp)</td>
<td>Respiratory-Syncytial-Virus, Influenzaviren (bei Kindern), Parainfluenzaviren, Enteroviren: vor allem Coxsackie-A-Virus Typ 9, Coxsackie-B-Viren Typen 4, 5, ECHO-Viren</td>
</tr>
<tr>
<td>Pharyngitis</td>
<td>Adenoviren Typen 1-3, 5, 7, 14, Enteroviren, Influenzaviren, Parainfluenzaviren, Respiratory-Syncytial-Virus, Hantaviren, Masernvirus, Rötelnvirus, FSME-Virus (Initialstadium), Filoviren, Lassavirus, Severe acute respiratory syndrome coronavirus type 2</td>
</tr>
<tr>
<td>Tracheitis, Tracheobronchitis</td>
<td>Influenza-A-Viren (hämorrhagisch), Respiratory-Syncytial-Virus, Parainfluenzaviren Typ 1, 2, Masernvirus, FSME-Virus</td>
</tr>
<tr>
<td>Bronchitis, Bronchiolitis</td>
<td>Rhinoviren (Asthmanfälle), Respiratory-Syncytial-Virus, Influenza-A-Viren, Influenza-B-Viren, Parainfluenzaviren, Enteroviren: Coxsackie A und B, ECHO, Enteroviren 68-71, Masernvirus</td>
</tr>
</tbody>
</table>
Präanalytik-Handbuch ANL-5 5.1-2 OE

akutes respiratorisches Syndrom (ARDS)

- Hantaviren (v. a. neuweltliche), SARS-CoV-2
- SARS-CoV-2
- Influenza-A-Viren (primär/sekundär)
- Influenza-B-Viren (seltener)
- Adenoviren Typen 4, 7 (Militärrekruten)
- Respiratory-Syncytial-Virus
- Varicella-Zoster-Virus
- Chlamydia pneumoniae
- Mycoplasma pneumoniae
- Coxiella burnetii (Q-Fieber)
- Chlamydia psittaci
- Chlamydia trachomatis

Pneumonie, Pneumonitis bei Erwachsenen

- Respiratory-Syncytial-Virus
- Adenoviren
- Rhinoviren
- Enteroviren: v. a. Coxsackie-A-Viren Typen 9, 16, 21,
- Coxsackie-B-Viren Typen 1 - 6
- ECHO-Viren, Enteroviren 68, 71
- Parainfluenzaviren
- Masernvirus
- Chlamydia trachomatis (perinatal erworben)
- Herpes-simplex-Virus Typ 2 (HSV-2, -1) (perinatal erworben)

Pneumonie, Pneumonitis bei Kindern

- Zytomegalievirus (v. a. nach Knochenmarktransplantation)
- Adenoviren
- Varicella-Zoster-Virus
- Herpes-simplex-Viren
- Masernvirus (Riesenzellpneumonie)
- Polyomaviren (BK)

Pleurodynie

- Coxsackie-B-Viren Typen 1 - 6
- Coxsackie-A-Viren
- ECHO-Viren

Schwangerschaft

<table>
<thead>
<tr>
<th>Erkrankungen, Symptome, Syndrome</th>
<th>Viren (Anmerkungen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Embryopathie, angeborene Missbildungen</td>
<td>Rötelnvirus (Gregg-Syndrom)</td>
</tr>
<tr>
<td></td>
<td>Zytomegalievirus</td>
</tr>
<tr>
<td></td>
<td>Varicella-Zoster-Virus</td>
</tr>
<tr>
<td></td>
<td>humanes Immundefizienzvirus Typ 1</td>
</tr>
<tr>
<td>intraterine Schädigung, evtl. Abort oder Frühgeburt</td>
<td>Varicella-Zoster-Virus</td>
</tr>
<tr>
<td></td>
<td>Zytomegalievirus</td>
</tr>
<tr>
<td></td>
<td>Mumpsvirus (?)</td>
</tr>
<tr>
<td></td>
<td>Enteroviren</td>
</tr>
<tr>
<td></td>
<td>Lassavirus</td>
</tr>
<tr>
<td></td>
<td>Filoviren</td>
</tr>
<tr>
<td>Hydrops fetalis</td>
<td>Parvovirus B19</td>
</tr>
<tr>
<td>Hepatitis oder Hepatosplenomegalie des Neugeborenen</td>
<td>Zytomegalievirus</td>
</tr>
<tr>
<td></td>
<td>Varicella-Zoster-Virus</td>
</tr>
<tr>
<td></td>
<td>Herpes-simplex-Virus (Herpes neonatorum)</td>
</tr>
<tr>
<td></td>
<td>Hepatitis-B-Virus</td>
</tr>
<tr>
<td></td>
<td>Hepatitis-C-Virus</td>
</tr>
<tr>
<td></td>
<td>Hepatitis-E-Virus</td>
</tr>
<tr>
<td>schwere Allgemeininfektion des Neugeborenen (sepsisartig)</td>
<td>Herpes-simplex-Virus Typ 2 (Herpes neonatorum)</td>
</tr>
<tr>
<td></td>
<td>Varicella-Zoster-Virus (konntale Varizellen)</td>
</tr>
<tr>
<td></td>
<td>Enteroviren (Infektion der Mutter)</td>
</tr>
</tbody>
</table>

Bearbeiter*in: Dr. Gentner-Göbel, Eva
Freigabe: Prof. Dr. Stamminger, Thomas
ID: 22222
Revision: 205/12.09.2022
Seite: 26 von 173
| vertikale Übertragung | humane Immundefizienzviren 1, 2 (HIV-1, -2)
Hepatitis B-Virus
Hepatitis C-Virus
Chlamydia trachomatis
HTLV-I, -II
humane Papillomaviren (Kondylome) |
|-----------------------|--|
| besondere Gefährdung der werdenden Mutter (schwerer Verlauf in der Schwangerschaft) | Varicella-Zoster-Virus (Pneumonie)
Hepatitis-E-Virus (fulminante Hepatitis)
Lassavirus |
| | |
6. Leistungsverzeichnis

6.1 Diagnostisches Angebot (Testverfahren)

Bitte entnehmen Sie die zugehörigen Informationen der Homepage des Instituts.
https://www.uniklinik-ulm.de/virologie/virologische-diagnostik.html

oder verwenden den Einsendeschein für externe Einsender.
https://www.uniklinik-ulm.de/virologie/virologische-diagnostik.html#c33972
7. Erregerorientierte Informationen zu den Untersuchungsanforderungen

7.1 Adenoviren (AdV) (Familie: Adenoviridae)

7.1.1 Erreger und Infektion

7.1.1.1 Virus

7.1.1.2 Epidemiologie

7.1.1.3 Infektionsformen
Die Primärinfektion erfolgt häufig im Kleinkindesalter. Generell ist der Manifestationsindex bei Adenovirus-Infektionen gering. Persistenz ist möglich in Tonsillen und Adenoiden, im Darmtrakt, in peripheren
Lymphozyten und bei immunsupprimierten im Urogenitaltrakt. Der Wirtszzelltropismus wird offenbar durch die Fiberproteine definiert. Eine Besonderheit stellen die Ausbrüche unter kasernierten Militärrekruten mit 80%-iger Morbidität (acute respiratory distress syndrome, Pneumonien), hoher Hospitalisierungsrate (20 bis 40%) und einzelnen Todesfällen dar.

Immunsupprimierte Patienten zeigen relativ häufig Adenovirus-Infektionen. Dies gilt beispielsweise für die Adenovirus-Hepatitis bei Kindern nach Lebertransplantation sowie für die Zystitis und Kolitis bei AIDS-Patienten und für anfangs asymptomatische, dann langsam progredient-disseminierte Adenovirus-Infektionen nach allogener Knochenmarktransplantation (Sepsis, Multi-Organ-Versagen).

7.1.1.4 Inkubationszeit
Atemwegsinfektionen 2-6 Tage, Augeninfektionen 6-10 Tage. Darminfektion 7-8 Tage.

7.1.2 Symptome/Erkrankungen
Die Krankheitsbilder korrelieren meist recht gut mit bestimmten Serotypen (s. nachstehende Tabelle).
Es gibt keine gesicherten Hinweise auf eine teratogene Bedeutung von Adenoviren. Einzelberichte über schwere perinatale Infektionen liegen allerdings vor.

Typische Erkrankungen durch Adenovirus-Infektionen

<table>
<thead>
<tr>
<th>Erkrankungen</th>
<th>Risikogruppen</th>
<th>Serotypen</th>
<th>Bemerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>akute Fieberhafte Pharyngitis</td>
<td>Säuglinge, Kleinkinder</td>
<td>1-2, 5, 7</td>
<td>DD: Streptokokkeninfektion</td>
</tr>
<tr>
<td>Pertussis-Syndrom</td>
<td>Säuglinge, Kleinkinder</td>
<td>5, 6</td>
<td>häufig Koinfektionen mit Bordetella</td>
</tr>
<tr>
<td>akuter grippler Infekt</td>
<td>Säuglinge, Kleinkinder</td>
<td>1-3, 5, 6</td>
<td>Pertussis insgesamt 5% bei Kindern ≤5 Jahren</td>
</tr>
<tr>
<td>akuter respiratorischer Infekt</td>
<td>Rekruten</td>
<td>3, 4, 7, 14, 21</td>
<td>epidemisch, Kofaktoren?</td>
</tr>
<tr>
<td>Pneumonie</td>
<td>Rekruten</td>
<td>4, 7</td>
<td></td>
</tr>
<tr>
<td>pharyngokonjunktivales Fieber</td>
<td>Schulkinders</td>
<td>3, 7, 14</td>
<td>10% der kindlichen Pneumonien</td>
</tr>
<tr>
<td>epidemicische Keratokonjunktivitis</td>
<td>alle Altersgruppen</td>
<td>8, 29, 37</td>
<td>nosokomiale Infektionen</td>
</tr>
<tr>
<td>folliculäre Konjunktivitis</td>
<td>Kinder</td>
<td>3, 4, 7 u.a.</td>
<td>Schwimmbadkonjunktivitis</td>
</tr>
<tr>
<td>Gastroenteritis</td>
<td>Säuglinge, Kleinkinder</td>
<td>31, 40, 41 u.a.</td>
<td></td>
</tr>
<tr>
<td>Darminvagination</td>
<td>Säuglinge, Kleinkinder</td>
<td>1, 2, 5, 6</td>
<td>Einzelfälle</td>
</tr>
<tr>
<td>Hepatitis</td>
<td>lebertransplantierte Kinder</td>
<td>1, 2, 5</td>
<td></td>
</tr>
<tr>
<td>akute hämorrhagische Zystitis</td>
<td>fast nur Jungen</td>
<td>11, 21</td>
<td></td>
</tr>
<tr>
<td>persistierende Harnwegsinfektion</td>
<td>AIDS, Immunsupprimierte</td>
<td>34, 35</td>
<td></td>
</tr>
<tr>
<td>disseminierte Infekt</td>
<td>KM-Transplantation</td>
<td>1, 2, 5, 6, 31 u.a.</td>
<td></td>
</tr>
<tr>
<td>Meningoenzephalitis</td>
<td>Kinder, Immunsupprimierte</td>
<td>7, 12, 32</td>
<td>wenige Fälle</td>
</tr>
</tbody>
</table>

7.1.3 Diagnostische Methoden

Nachweis von Viren oder Virusbestandteilen (Antigen/Nukleinsäure)

<table>
<thead>
<tr>
<th>Methode</th>
<th>Probenmaterial/Transport</th>
<th>Ergebnis/Einheit</th>
<th>Anmerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virusisolierung</td>
<td>Stuhl, Urin, Liquor, Abstrich/Aspirat: NA, RA, AuA; bei RT ohne Konservierung mehrere Tage stabil</td>
<td>pos/neg</td>
<td>Testdauer: KZK: 24-48 h; Isol: 72 h-30 Tage (AuA)</td>
</tr>
</tbody>
</table>

Bearbeiter*in | Freigabe*in | ID | Revision | Seite |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Gentner-Göbel, Eva</td>
<td>Prof. Dr. Stamminger, Thomas</td>
<td>22223</td>
<td>005/12.09.2022</td>
<td>30 von 173</td>
</tr>
</tbody>
</table>
7.1.4 Untersuchungsinformationen und Materialien

Akute Erkrankungen des Gastrointestinaltraktes (gehäuft als nosokomiale Infektion in der Kinderklinik, vorwiegend auf Säuglingsstationen) Antigen-nachweis im Stuhl mittels EIA oder Adenovirus-DNA-Nachweis mit Hilfe der PCR. Wenn etabliert, ist die EM-Diagnostik bei Stuhlproben hinsichtlich der klinischen Bedeutung sensitiv und spezifisch.

Seltene Erkrankungen: Hämorraghische Zystitis und Enzephalitis: Für die Urindiagnostik ist die Virusisolierung oder die PCR und für die Liquordiagnostik die PCR indiziert. Disseminierte, sepsisartige Adenovirus-Infektionen mit multiplen Organmanifestationen bei stark immundefizienten Patienten (meist

7.1.5 Virologische Interpretationen und klinische Bedeutung

Persistenz im Urogenitaltrakt bei AIDS und bei immunsupprimierten Patienten (z. B. nach KMT) ohne aktuellen Krankheitswert kommt vor (siehe: aber auch „seltene Erkrankungen“).

7.1.6 Besondere diagnostische Probleme

Isolierung der AdV-Serotypen 40 und 41 nur in Graham 293-Zellen möglich.

7.1.7 Meldepflicht

Bei Nachweis im Konjunktivalabstrich Meldepflicht nach §7 IfSG namentlich an das Gesundheitsamt.

7.2 Astrovirus (HuAsV) (Familie: Astroviridae)

7.2.1 Erreger und Infektion

7.2.1.1 Virus

Unbehüllte, ca. 30 nm große, runde, sehr umweltresistente Positivstrang-RNA-Viren. Das Genom ist etwa 6,8 kb groß und besitzt zwei Leserahmen für die enzymatischen Funktionen (Protease, RNA-Polymerase) und
für das Kapsid. Die Kapsidoberfläche zeigt im Elektronenmikroskop meist eine charakteristische, sternförmige Struktur. Die humanen Astroviren (HuAsV) lassen sich in der Zellkultur anzüchten und in Serotypen einteilen. Derzeit sind acht Serotypen (Serotyp 1-8) bekannt.

7.2.1.2 Epidemiologie

Die Viren werden bereits einen Tag vor dem Auftreten der Symptome, während der Erkrankung und noch mehrere Tage nach Ende der Diarrhoe mit dem Stuhl ausgeschieden.

7.2.1.3 Infektionsformen

7.2.1.4 Inkubationszeit

Die Inkubationszeit beträgt 24-72 h.

7.2.2 Symptome/Erkrankungen

Die im Durchschnitt 2-3 Tage anhaltende Diarrhoe kann mit Fieber, Erbrechen und abdominalen Schmerzen einhergehen. In industrialisierten Ländern verläuft die Erkrankung in der Regel ohne schwerwiegende Dehydratation, jedoch kann es abhängig vom allgemeinen Gesundheitszustand der Kinder zu Dehydratation, Elektrolytentgleisung sowie in seltenen Fällen zu metabolischer Azidose kommen.
7.2.3 Diagnostische Methoden

Nachweis von Viren oder Virusbestandteilen (Antigen, Nukleinsäure)

<table>
<thead>
<tr>
<th>Methode</th>
<th>Probenmaterial/Transport</th>
<th>Ergebnis/Einheit</th>
<th>Anmerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virusisolierung</td>
<td>Stuhl, 24-72 h nach Symptombeginn</td>
<td>pos/neg, ggf. Serotyp (1-8)</td>
<td>Testdauer: 48-72 h, Sens: geringer als EIA, Spez: hoch</td>
</tr>
<tr>
<td>EMA (IEM)</td>
<td>Stuhl, 24-72 h nach Symptombeginn</td>
<td>pos/neg (27 bis 35 nm große sternartige Partikel)</td>
<td>Testdauer: 5h, Spez: höher bei IEM</td>
</tr>
<tr>
<td>EIA (Antigen)</td>
<td>Stuhl, 24-72 h nach Symptombeginn</td>
<td>pos/neg</td>
<td>Testdauer: 3h, Sens: hoch, Spez: hoch</td>
</tr>
<tr>
<td>RT-PCR</td>
<td>Stuhl</td>
<td>pos/neg</td>
<td>Testdauer: 12h, Sens: höchst, Spez: hoch</td>
</tr>
</tbody>
</table>

Nachweis spezifischer Antikörper

<table>
<thead>
<tr>
<th>Methode</th>
<th>Probenmaterial/Transport</th>
<th>Ergebnis/Einheit</th>
<th>Anmerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT</td>
<td>Serum</td>
<td>Titer</td>
<td>keine Routinemethode</td>
</tr>
<tr>
<td>ELISA</td>
<td>Serum</td>
<td>pos/neg</td>
<td>keine Routinemethode</td>
</tr>
</tbody>
</table>

7.2.4 Untersuchungsindikationen und Materialien

7.2.5 Virologische Interpretationen und klinische Bedeutung

Jeder Nachweis von HuAsV beweist eine akute Infektion.

7.2.6 Besondere diagnostische Probleme

- Virusanzucht und Charakterisierung bleiben derzeit auf Speziallaboratorien beschränkt und gehören nicht zur Routinediagnostik.
- HuAsV sind bei immunsupprimierten Patienten noch 1-2 Wochen nach klinischer Manifestation durch RT-PCR nachweisbar.
- Antikörpernachweise spielen keine Rolle bei der Diagnostik symptomatischer Infektionen.

7.2.7 Meldepflicht

keine
7.3 Bocaparroviren (HBoV) (Familie: Parvoviridae – Bocavirus)

7.3.1 Erreger und Infektion

7.3.1.1 Virus
Das humane Bocaparrovirus (HBoV) ist ein kleines nichtumhülltes, 18-26 nm großes Einzelstrang-DNA-Virus mit ikosaedrischer Nukleokapsidstruktur. Das lineare Genom ist nur 4-6 kb groß und kodiert für zwei Formen von nichtstrukturalen Proteinen NS1 und das nukleäre Phosphoprotein NP1, sowie für die zwei Hauptstruktuproteine VP1 und VP2. Die Replikation ist stark von zellulären Funktionen abhängig.

Das HBoV gehört innerhalb der Subfamilie Parvovirinae zum Genus Bocavirus. Vier humane Bocaviren sind bekannt (HBoV1-4). HBoV1 wurde 2005 in nasopharyngealen Aspiraten von Kindern mit akuter Atemwegserkrankung entdeckt. HBoV2-4 sind hauptsächlich in Stuhlproben zu finden.

Wie alle Parvoviren ist auch HBoV vermutlich hoch resistent gegenüber Desinfektionsmitteln. Daten zur Tenazität des HBoV wurden bisher nicht erhoben.

7.3.1.2 Epidemiologie

HBoV-1 kann sich auch vom Respirationsstrakt aus in den Gastrointestinaltrakt ausbreiten. In 10,6% der Stuhlproben von Kindern mit akuter nichtbakterieller gastroenteritis wurden mittels quantitativer PCR eine niedrige HBoV-1 Genom-Last entdeckt, häufig assoziiert mit Rota- und Noroviren.

Weniger häufig gibt es Bocavirusinfektionen in anderen Altersgruppen. Die Rate der Koinfektionen mit weiteren respiratorischen Viren schwankt zwischen 18 und 90%.

Von den enteralen Bocaviren ist HBoV 2 in bis zu 26% der Stuhlproben von Kindern und in bis zu 4% der Erwachsenen zu finden. HBoV-DNA der Typen 3 und 4 wurde in <5% der Stuhlproben entdeckt.

7.3.1.3 Infektionsformen
Die primäre HBoV-1 Infektion ist akut und systemisch (DNA-Nachweis im Serum) begleitet von milder bis schwerer Erkrankung. Ort der primären Replikation sind wahrscheinlich die Zellen des Respirationstraktes bis

<table>
<thead>
<tr>
<th>Bearbeiter*in</th>
<th>Freigeben*in</th>
<th>ID</th>
<th>Revision</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Gentner-Göbel, Eva</td>
<td>Prof.Dr. Stamminger, Thomas</td>
<td>22222</td>
<td>005/12.09.2022</td>
<td>35 von 173</td>
</tr>
</tbody>
</table>

Ausgedruckt ist das Dokument eine unkontrollierte Kopie und unterliegt nicht dem Änderungsdienst
zu den Bronchiolen. Die HBoV-1-Virämie tritt am häufigsten bei Kindern unter 2 Jahren auf und ist ein exzellenter Marker der Primärinfection.

Die verlängerte Ausscheidung oder Präsenz von HBoV in den Atemwegen (mindestens 6 Monate nach Infektion) ist verantwortlich für die häufige Anwesenheit der Viren in asymptomatischen, immunkompetenten Personen. Sie könnte die hohe Rate der Koinfektionen erklären. Es gibt zurzeit keine Hinweise auf Etablierung einer Viruspersistenz.

7.3.1.4 Inkubationszeit

Die Inkubationszeit ist bisher nicht bekannt.

7.3.2 Symptome/Erkrankungen

Die klinischen Manifestationen reichen von milder Infektion des oberen Respirationstraktes bis zur schweren Pneumonie. Bei Kindern mit asthmoider Stenoseatmung (viertägigster Erreger nach HRV, EV und RSV), Bronchiolitis, Bronchitis, Rhinopharyngitis, Asthmaanfällen oder Pneumonie wurde HBoV nachgewiesen.

Bei Kindern mit respiratorischen Symptomen und gleichzeitiger Gastroenteritis wurde HBoV-1 auch im Stuhl nachgewiesen.

7.3.3 Diagnostische Methoden

Nachweis von Viren oder Virusbestandteilen (Antigen, Nukleinsäure)

<table>
<thead>
<tr>
<th>Methode</th>
<th>Probenmaterial/Transport</th>
<th>Ergebnis/Einheit</th>
<th>Anmerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virusisolierung</td>
<td></td>
<td></td>
<td>nicht verfügbar</td>
</tr>
<tr>
<td>EIA (Antigen)</td>
<td>NRS (Stuhl)</td>
<td>pos/n</td>
<td>verfügbar, Sens: 10% geringer als PCR</td>
</tr>
<tr>
<td>PCR</td>
<td>NRS und Serum in Akutphase, (Stuhl)</td>
<td>pos/neg, quantitativ</td>
<td>Sens: hoch, kommerziell - Multiplex-PCR</td>
</tr>
</tbody>
</table>

Nachweis spezifischer Antikörper

<table>
<thead>
<tr>
<th>Methode</th>
<th>Probenmaterial/Transport</th>
<th>Ergebnis/Einheit</th>
<th>Anmerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELISA: IgM/IgG-spezifisch, IgG-Avidität</td>
<td>Serum</td>
<td>Titer</td>
<td>Ak gegen Strukturprotein VP2, IgG-Avidität erlaubt genauere Diagnose der akuten Infektion, keine Routinemethode</td>
</tr>
<tr>
<td>Immunoblot (WB)</td>
<td>Serum</td>
<td>pos/neg</td>
<td>keine Routinemethode</td>
</tr>
</tbody>
</table>

Falls im Zusammenhang mit einer Erkrankung unterer Atemwege eine HBoV-1-Diagnostik erforderlich wird, ist mit der quantitativen PCR aus NRS und Serum in Verbindung mit der Antikörperbestimmung (IgM, IgG im Serum) oder IgG-Avidität) eine optimale Diagnostik zu erzielen.

7.3.4 Untersuchungsindikationen und Materialien

Abhängig von den Primärsymptomen (respiratorisch oder gastrointestinal) werden Nasen-Rachen-Sekret (NRS) oder Stuhl und Serum untersucht (NRS-PCR allein ist nicht ausreichend). Eine Virämie ist nur während der aktiven Infektion nachweisbar (sonst auch Ausscheidung bei Gesunden!).

Geeignete Materialien sind NRS, nasopharyngealer Abstrich in VTM, Serum und ggf. Stuhl.
7.3.5 Virologische Interpretationen und klinische Bedeutung

Eine akute HBoV-1-Infektion ist durch eine hohe Viruslast im Serum und einer Probe aus dem Nasopharynx, bei gleichzeitig positivem IgM oder IgG-Anstieg im Serumpaar oder niedriger IgG-Avidität zuverlässig zu diagnostizieren. IgG-Antikörper werden in der Akutphase nicht vor dem 5. Tag nachweisbar.

Die quantitative PCR ist erforderlich, da eine hohe Viruslast (>2×10⁸ Genome/ml) mit akuter Infektion, mit weniger Koinfektionen und mit zunehmender Schwere der Erkrankung korreliert.

In vielen Studien gibt es zunehmend Hinweise, dass eine positive Korrelation zwischen respiratorischer Erkrankung und hoher DNA-Kopienzahl (NRS und Serum) besteht und dass HBoV-1 ein wichtiger pathogenetisch relevanter respiratorischer Erreger ist.

7.3.6 Besondere diagnostische Probleme

Das Erkennen der pathogenetische Rolle von HBoV-1 ist eingeschränkt durch gleichzeitige Beteiligung anderer respiratorischer Viren (bis zu 90%).

Eine serologische Differenzierung zwischen den vier HBoV-Typen ist wegen der Kreuzreaktivität schwierig.

7.3.7 Meldepflicht

keine

7.4 Coronaviren (CoV) (Familie: Coronaviridae)

7.4.1 Erreger und Infektion

7.4.1.1 Virus

7.4.1.2 Epidemiologie

7.4.1.3 Infektionsformen
Zytopathogene Infektion; keine persistierenden Infektionen bekannt, Reinfektionen sind bei den seit langem bekannten Coronaviren möglich. SARS-CoV-2 Patienten können über lange Zeiträume hinweg in respiratorischen Untersuchungsmaterialien PCR-positive sein (>40 Tage).

7.4.1.4 Inkubationszeit
Die Inkubationszeit beträgt 2-5 Tage. Nach derzeitigen Erkenntnissen beträgt bei SARS-CoV die Inkubationszeit 1-14 Tage (Mittel: 5 Tage).

7.4.2 Symptome/Erkrankungen

SARS sowie MERS sind gekennzeichnet durch Fieber >38 °C nachfolgend trockener Husten (100%), Atemnot (80%) und radiologische Veränderungen, Schüttelfrost (73%), Ubelkeit (70%), Myalgien (60%), Durchfall, Kopfschmerzen, Exanthem. Typische Laborbefunde sind: Lymphopenie, Erhöhung von LDL, Transaminasen, Kreatin. Ein erheblicher Teil der Patienten bedarf intensivmedizinischer Versorgung. Die durchschnittliche Letalität beträgt bei derzeit 80-98 weltweit registrierten Fällen 9,6%, jedoch schwankt die Letalität in einzelnen Berichten je nach Alter und Vorserkrankungen erheblich (<1-50%). Atypische und asymptptomatische Infektionen treten wohl auch auf, es ist unklar ob Koinfektionen mit anderen Erregern den Verlauf der Erkrankung beeinflussen.

7.4.3 Diagnostische Methoden
Nachweis von Viren oder Virusbestandteilen (Antigen, Nukleinsäure)

<table>
<thead>
<tr>
<th>Methode</th>
<th>Probenmaterial/Transport</th>
<th>Ergebnis/Einheit</th>
<th>Anmerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virusisolierung</td>
<td>respir. Sekrete, Stuhl, Blut, Gewebe</td>
<td>pos/neg</td>
<td>keine Routinemethode (SARS-CoV und SARS-CoV-2: L3)</td>
</tr>
<tr>
<td>EM (Viruspartikel, Einschlusskörper)</td>
<td>Stuhl</td>
<td>pos/neg</td>
<td>Testdauer: 4 h</td>
</tr>
</tbody>
</table>

Bearbeiter*in: Dr. Gentner-Göbel, Eva
Freigabe*in: Prof. Dr. Stamminger, Thomas
ID: 22223
Revision: 09/12/2022
Seite: 33 von 173

Ausgedruckt ist das Dokument eine unkontrollierte Kopie und unterliegt nicht dem Änderungsdienst
Pränalytik-Handbuch ANL-5.5.1-2 OE

<table>
<thead>
<tr>
<th>IFT, EIA (Antigene)</th>
<th>respir. Sekrete</th>
<th>pos/neg</th>
<th>Testdauer: 24 h</th>
<th>Sens: hoch</th>
<th>Spez: hoch</th>
</tr>
</thead>
<tbody>
<tr>
<td>RT-PCR (Nukleinsäure)</td>
<td>respir. Sekrete, Stuhl, Blut, Gewebe</td>
<td>pos/neg</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nachweis spezifischer Antikörper

<table>
<thead>
<tr>
<th>Methode</th>
<th>Probenmaterial/Transport</th>
<th>Ergebnis/Einheit</th>
<th>Anmerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT</td>
<td></td>
<td></td>
<td>nicht etabliert</td>
</tr>
<tr>
<td>IFT, ELISA</td>
<td>Serum</td>
<td>Titer</td>
<td>Für SARS-CoV-2 verfügbar</td>
</tr>
<tr>
<td>Immunoblot (WB)</td>
<td></td>
<td>pos/neg</td>
<td></td>
</tr>
</tbody>
</table>

7.4.4 Untersuchungsindikationen und Materialien

Erkrankung mit Fieber >38 °C mit Husten und/oder Atemnot und möglicher Exposition innerhalb von 10 Tagen vor Symptombeginn (enger Kontakt mit einem SARS-Verdachtsfall oder Aufenthalt in einer Region aus der in den letzten Wochen Übertragungen von SARS berichtet wurden) bei Verdacht auf COVID-19 sollten je nach klinischer Situation möglichst Proben parallel aus den oberen und den tiefen Atemwegen entnommen werden (Schutzmaßnahmen beachten, FFP3 Maske!).

Der Probenversand erfolgt durch Transportdienste, die für Gefahrgüter der Klasse 6.2 zugelassen sind. Die Proben sind als diagnostische Proben nach UN-Nr. 3373 zu klassifizieren und nach der UN-Verpackungsanweisung P650 zu verpacken.

<table>
<thead>
<tr>
<th>Bearbeiter*in</th>
<th>Freigabe*in</th>
<th>ID</th>
<th>Revision</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Gentner-Göbel, Eva</td>
<td>Prof. Dr. Staminger, Thomas</td>
<td>22223</td>
<td>09/12.09.2022</td>
<td>40 von 273</td>
</tr>
</tbody>
</table>
7.4.5 Virologische Interpretationen und klinische Bedeutung

Positive Virusnachweise in respiratorischen Sekreten oder anderen Materialien sprechen für eine akute Infektion.

Bei SARS-Diagnostik sollte ein positiver RT-PCR-Befund durch eine erneute unabhängige Testung, vorzugsweise durch Testung eines zweiten Materials von einem anderen Entnahmezeitpunkt, bestätigt werden.

7.4.6 Besondere diagnostische Probleme

7.4.7 Meldepflicht

Der Nachweis von SARS-CoV-2 RNA ist nach §7 IfSG meldepflichtig.

7.5 Denguevirus (Familie: Flaviviridae)

7.5.1 Erreger und Infektion

7.5.1.1 Virus

Umhüllte, wenig umweltresistente Virespartikel (40-50 nm). Das ikosaedrische Capsid besteht aus nur einem Strukturprotein (Core-Protein) und umschließt eine 10,5 kb große Positivstrang-RNA. Die Virushülle enthält zwei weitere virale Strukturproteine, M (Membran, Größe 8 kD) und E (Envelope, Größe 55 kD). Die Adsorption des Virus an die Zellen wird durch das E-Protein vermittelt und ist der entscheidende Parameter für die Virulenz. Okt der Virusvermehrung ist das Zytoplasma. Es existieren vier Serotypen (Neutralisation). Das E-Protein fungiert als Hämagglutinin und ist das wesentliche Antigen, gegen welches neutralisierende Antikörper gebildet werden.
7.5.2 Epidemiologie

7.5.3 Infektionsformen

7.5.4 Inkubationszeit

Die Inkubationszeit beträgt 3-7 Tage.

7.5.2 Symptome/Erkrankungen

7.5.3 Diagnostische Methoden

Nachweis von Viren oder Virusbestandteilen (Antigen, Nukleinsäure)

<table>
<thead>
<tr>
<th>Methode</th>
<th>Probenmaterial/Transport</th>
<th>Ergebnis/Einheit</th>
<th>Anmerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virusisolierung</td>
<td>Serum/Plasma, Liquor</td>
<td>pos/neg</td>
<td>Testdauer: 3-8 Tage</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sens: mittel, nur frühes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Krankheitsstadium; Spez: hoch</td>
</tr>
</tbody>
</table>

Bearbeiter*in: Dr. Gentner-Göbel, Eva
Freigabe*in: Prof. Dr. Stamminger, Thomas
ID: 22223
Revision: 09/12/2022
Seite: 42 von 373
Nachweis viraler Antigene (NS1-Antigen)

<table>
<thead>
<tr>
<th>Methode</th>
<th>Probenmaterial/Transport</th>
<th>Ergebnis/Einheit</th>
<th>Anmerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>EM (IEM)</td>
<td>Blut</td>
<td>pos/neg</td>
<td>während der Virämie möglich</td>
</tr>
<tr>
<td>RT-PCR</td>
<td>Serum/Plasma, Liquor</td>
<td>pos/neg</td>
<td>Testdauer: 15-20 Minuten</td>
</tr>
</tbody>
</table>

Nachweis spezifischer Antikörper

<table>
<thead>
<tr>
<th>Methode</th>
<th>Probenmaterial/Transport</th>
<th>Ergebnis/Einheit</th>
<th>Anmerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT</td>
<td>Serum, Liquor</td>
<td>Titer</td>
<td>aufwändig, stammspezifisch</td>
</tr>
<tr>
<td>IFT, Anti-μ-ELISA: IgM-Ak Immunoblot (WB), Dotplot</td>
<td>Serum, Liquor</td>
<td>Titer</td>
<td>kürzliche Tests, IFT weist vorw. IgG-Ak nach</td>
</tr>
<tr>
<td>HHT</td>
<td>Serum</td>
<td>Titer</td>
<td>Referenzmethode</td>
</tr>
</tbody>
</table>

7.5.4 Untersuchungsindikationen und Materialien

Unklares Fieber, grippeähnliche Symptomatik, Gelenkschmerzen nach Tropenaußenhalt. Serum für Antikörpernachweise. Bei schweren Verläufen Virusnachweis (PCR) aus dem Blut (EDTA-Blut, Serum, Plasma). Serum, Plasma oder Vollblut (100 μl) für den NS1-Antigennachweis (NS1-Antigen-Schnelltest für, z. B. das Screening importierter Dengue Fälle auf Flughäfen).

7.5.5 Virologische Interpretationen und klinische Bedeutung

Denguevirus NS1-Antigen kann einen Tag nach Fieberbeginn nachgewiesen werden. IgG/IgM-Antikörpernachweis (Serokonversion und/oder signifikanter Titeranstieg) sichert die Diagnose. Die Immunität (typenspezifisch) wird mittels NT bestimmt, wobei IgM-Ak stärker typenspezifisch als IgG-Ak sind. Nur bei schweren Verläufen kommt es zu länger anhaltender Virämie.

7.5.6 Besondere diagnostische Probleme

DD: andere fieberhafte Viruserkrankungen, insbesondere aber Insekten-übertragene Flavivirus-(West-Nil) oder Alpha-Virus-Infektionen, wie Chikungunya-Virus (Indien, Südostasien) oder Ross-River-Virus (Australien), Malaria, Typhus.

7.5.7 Meldepflicht
Meldepflicht bei hämorrhagischem Dengue-Fieber nach §§6 und 7 IfSG

7.6 Enteroviren (EV) (Familie: Picornaviridae)

7.6.1 Erreger und Infektion

7.6.1.1 Virus
Kleine, hüllenlose, sehr umweltresistente ikosaedrische Partikel (ca. 30 nm), die eine Positivstrang-RNA (ca. 7,4 kb) enthalten. Die Kapside bestehen aus 60 Untereinheiten, die jeweils aus vier Proteinen VP1, VP2, VP3 und VP4 gebildet werden. Diese entstehen durch posttranslationale Spaltung eines Polypeptids. Die Virusreplikation findet im Zytoplasma der Wirtszelle statt. Zum Genus Enterovirus gehören folgende Viren (Serotypen):
- Polioviren (PV) Typ 1-3
- Coxsackieviren Typ A (CVA) 1-22, 24
- Coxsackieviren Typ B (CVB) 1-6
- ECHO-Viren (ECV) 1-9*, 11-21, 24-27, 29-34
- Enteroviren (EV) 68-71, 73-78
- Einige Enteroviren sind nach ihrer Erstbeschreibung reklassifiziert worden:
 - CVA23 = ECV 9
 - ECV10 = Reovirus 1
 - ECV22, 23 = Parechovirus 1, 2
 - ECV28 = Rhinovirus 1A

*ECV1 und ECV8 sind Antigenvarianten eines Serotyps, ebenso CVA24 und ECV34.

Enterovirus 72 (Hepatitis-A-Virus) ist mittlerweile Prototyp eines neuen Genus, Hepatovirus.
Eine neuere taxonomische Einteilung existiert bereits, danach wird in Polioviren und humane Enteroviren (HEV) Gruppe A-D unterteilt. Es gibt eine Reihe von Virusisolaten, die sich serologisch nicht eindeutig zuordnen lassen.

<table>
<thead>
<tr>
<th>Bearbeiter*in</th>
<th>Freigeb*in</th>
<th>ID</th>
<th>Revision</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Gentner-Göbel, Eva</td>
<td>Prof.Dr. Stamminger, Thomas</td>
<td>22223</td>
<td>005/12.09.2022</td>
<td>44 von 173</td>
</tr>
</tbody>
</table>
7.6.1.2 Epidemiologie

7.6.1.3 Infektionsformen

Schwangerschaft:

Neonatale (nicht diaplazentare) Enterovirus-Infektion mit ECHO-Viren (z. B. Typ 11), Coxsackieviren (besonders Typ B3 und B5, selten A) und früher auch Polioviren kommen vor. Der Verlauf ist variabel, perinatal meist schwer mit Multiorganbefall.

Immunsuppression:

Eine Viruspersistenz ist möglich (z. B. langdauernde inapparente Virusausscheidung, aber auch chronische Meningoenzephalitis). Folglich ist bei diesen Patienten eine Impfung mit Sabin-Impfstoff absolut kontraindiziert.

Bearbeiter*in Freigabe*in ID Revision Seite
Dr. Gentner-Göbel, Eva Prof. Dr. Stamminger, Thomas 22223 005/12.09.2022 45 von 173

Ausgedruckt ist das Dokument eine unkontrollierte Kopie und unterliegt nicht dem Änderungsdienst
7.6.4 Inkubationszeit
2-24 Tage (selten bis zu 35 Tage); Polio: Lähmungserscheinungen nach 9-12 Tagen (biphasisch bei Kleinkindern/Jugendlichen); 1-2 Tage bei akuter hämorrhagischer Konjunktivitis. In der Inkubationszeit lassen sich EV meist aus Pharynx und dem Stuhl isolieren.

7.6.2 Symptome/Erkrankungen
Alle Enteroviren können uncharakteristische fieberhafte Infekte hervorrufen („Sommergrippe“) und viele auch Exantheme. Einige Enteroviren sind mit bestimmten Erkrankungen assoziiert, insgesamt ist aber eine strenge Zuordnung bestimmter Krankheitsbilder zu bestimmten Serotypen nicht möglich.

Typische Erkrankungen durch Enteroviren

<table>
<thead>
<tr>
<th>Viren</th>
<th>Erkrankungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polioviren</td>
<td>„Sommergrippe“, Myalgien, Myokarditis, Myelitis der Motoneurone, Paralyse, Enzephalitis</td>
</tr>
<tr>
<td></td>
<td>Akute hämorrhagische Konjunktivitis (Typ 24)</td>
</tr>
<tr>
<td></td>
<td>Aseptische Meningitis, Meningoenzephalitis, Paralyse (Typ 7)</td>
</tr>
<tr>
<td></td>
<td>Myokarditis, Perikarditis</td>
</tr>
<tr>
<td>Coxsackie-B-Viren</td>
<td>„Sommergrippe“, Atemwegserkrankungen, Pleurodynie (M. Bornholm)</td>
</tr>
<tr>
<td></td>
<td>Aseptische Meningitis, Meningoenzephalitis, Paralyse, Myokarditis, Perikarditis, Insultitis, Typ 1-Diabetes</td>
</tr>
<tr>
<td></td>
<td>Schwere systemische Erkrankungen von Neugeborenen (ZNS, Myokarditis)</td>
</tr>
<tr>
<td>ECHO-Viren</td>
<td>„Sommergrippe“, Atemwegserkrankungen, Exantheme, Aseptische Meningitis, Meningoenzephalitis, Paralyse, Myokarditis</td>
</tr>
<tr>
<td></td>
<td>gastroenteritis bei Kleinkindern</td>
</tr>
<tr>
<td></td>
<td>Schwere systemische Erkrankungen von Neugeborenen (ZNS, Myokarditis)</td>
</tr>
<tr>
<td>Enteroviren (Typen 68-71)</td>
<td>Bronchiolitis, Pneumonie (Typen 68, 69)</td>
</tr>
<tr>
<td></td>
<td>akute hämorrhagische Konjunktivitis (Typ 70 pandemisch)</td>
</tr>
<tr>
<td></td>
<td>Hand-Fuß-Mund-Krankheit (Typ 71), aseptische Meningitis, Meningoenzephalitis, Paralyse (Typ 70, 71)</td>
</tr>
</tbody>
</table>

7.6.3 Diagnostische Methoden
Nachweis von Viren oder Virusbestandteilen (Antigen/Nukleinsäure)

<table>
<thead>
<tr>
<th>Methode</th>
<th>Probenmaterial/Transport</th>
<th>Ergebnis/Einheit</th>
<th>Anmerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>intraserotypischer NT</td>
<td>Genotypisierung</td>
<td>Virusisolat Impfstamm/nicht Impfstamm</td>
<td>möglich, aber unüblichisch</td>
</tr>
<tr>
<td>Genotypisierung</td>
<td>Sequenzierung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EM (Nachweis von Viruspartikel, Einschlusskörperrn)</td>
<td>Freigeben*in ID Revision Seite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. Gentner-Göbel, Eva</td>
<td>Prof. Dr. Stamminger, Thomas</td>
<td>22223 09/12.09.2022 46 von 373</td>
<td></td>
</tr>
</tbody>
</table>
Immunhistologie
(Nachweis viraler Antigene)

- **RT-PCR:** nach RNA-Extraktion
 - Liquor, Gewebe, Stuhl
 - Abstrich/Aspirat: RA
 - Gewebe
 - pos/neg, evt. semiquant.
 - **Testdauer:** 24 h
 - **Sens:** hoch, Typisierung möglich
 - **Myokardbiopsie**

Nachweis spezifischer Antikörper

<table>
<thead>
<tr>
<th>Methode</th>
<th>Probenmaterial/Transport</th>
<th>Ergebnis/Einheit</th>
<th>Anmerkungen</th>
</tr>
</thead>
</table>
| NT | Serum | Titer | **Polio-Immunitätsbestimmung,**
| | | | bei spätem Erstserum keine 4-fachen Titeranstiege, nicht streng typenspez. (CVA, CVB, ECV) |
| ELISA IgG-, IgM- Nachweis | Serum | | nicht ausreichend spezifisch und nicht standardisiert |
| HHT, KBR | Serum | Titer | **KBR: Sens:** gering |
| Agglutination Präzipitation | | | HHT, Agglutination, Präzipitation: obsolet |

7.6.4 Untersuchungsinhalte und Materialien

Akute Infektion bei allen EV: vorzugsweise Stuhl und Rachenabstrich (möglichst mehrfach) zur Virusisolierung

Meningitis: Liquor (PCR, Virusisolierung ist schwierig und nur bei Liquorentnahme in den ersten beiden Krankheitsstagen möglich)

Myokarditis: Biopsie (PCR, in situ-Hybridisierung (ISH))

Immunstatus: der Nachweis der Immunität gegen PV 1-3 ist nur durch Neutralisationstests im Serum möglich.

Notfalldiagnostik: Meningitis/(Meningo-) Enzephalitis: Liquor (PCR)

7.6.5 Virologische Interpretationen und klinische Bedeutung

7.6.6 Besondere diagnostische Probleme

7.6.7 Meldepflcht

Meldepflcht nach §6 u. 7 IfSG namentlich an das Gesundheitsamt bei Poliomyelitis (auch bei begründetem Verdacht).

7.7 Epstein-Barr-Virus (EBV) (Familie: Herpesviridae - Gammaherpesvirinae)

7.7.1 Erreger und Infektion

7.7.1.1 Virus

Das umhüllte wenig umweltresistente Partikel (150-180 nm) besteht aus einer doppelsträngigen (ds) DNA (ca. 172 kb), einem Kapsid (ca. 100 nm, 162 Kapsomere) und einer Tegumentschicht (Matrix) von variabler Stärke. Ort der Virusvermehrung ist der Kern der infizierten Zelle. Die ds-DNA liegt im Virion linear, in der persistent infizierten Zelle jedoch in episomaler Form vor. Typen EBV-1 und EBV-2.

Für die Antikörpernachweise mittels IFT diagnostisch wichtige Antigenkomplexe:
- Epstein-Barr-Virus-spezifisches Kernantigen (EBNA): Primärinfektionen sind immer Anti-EBNA-1-negativ
- Virus-Kapsid-Antigen (VCA): Strukturproteine des Virus kapsids und der Hülle, Antikörper werden in allen Stadien der Infektion gebildet
- Early antigen (EA): hauptsächlich regulatorische Proteine, Aktivitätsmarker?
- Bei kommerziellen ELISA-Tests sowie Immunoblots und Lineassays finden auch rekombinante Antigene und Antigenpräparationen aus infizierten Zellen Anwendung, die nur zum Teil mit den im IFT verwendeten identisch sind.

7.7.1.2 Epidemiologie

7.7.1.3 Infektionsformen

7.7.1.4 Inkubationszeit

Die Inkubationszeit beträgt ca. 30-50 Tage.

7.7.2 Symptome/Erkrankungen

Bei jungen Erwachsenen in ca. 50% Manifestation als infektios Mononukleose (Pfeiffer-Drüsenfieber) mit Fieber, Lymphknotenschwellung, Tonsillenbelägen und Lymphozytose mit atypischen T-Lymphozyten. In ca. 50% beobachtet man eine Splenomegalie, häufig einen Transaminasenanstieg, zum Teil auch eine Hepatomegalie. Ein Arzneimittel-allergisches makulopapulöses Exanthem tritt gehäuft nach Antibiotikagabe auf. Als seltene Komplikation werden Pneumonien, neurologische Symptome (Meningitis, Enzephalitis) oder Arthritis beobachtet.

7.7.3 Diagnostische Methoden

Nachweis von Viren oder Virusbestandteilen (Antigen, Nukleinsäure)

<table>
<thead>
<tr>
<th>Methode</th>
<th>Probenmaterial/Transport</th>
<th>Ergebnis/Einheit</th>
<th>Anmerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virussisolierung</td>
<td>Vollblut/Lymphozyten</td>
<td>pos/neg</td>
<td>Testdauer: 4-8 Wochen</td>
</tr>
<tr>
<td>(Etablierung lymphoblastoider Zelllinien aus Patientenlymphozyten)</td>
<td>(EDTA-Blut)</td>
<td>Typisierung EBV/2 möglich</td>
<td>Sens: mittel</td>
</tr>
<tr>
<td>EM (EIM)</td>
<td>Blut</td>
<td>pos/neg</td>
<td>während der Virämie möglich</td>
</tr>
<tr>
<td>Immunhistologie/-zytologie</td>
<td>Gewebe/Zellen (Lymphozyten)</td>
<td>Semiquant.</td>
<td>mAK gegen EBNA1/LMP1</td>
</tr>
<tr>
<td>Nachweis viraler Antigene</td>
<td>Tumorgewebe</td>
<td>pos/neg</td>
<td></td>
</tr>
<tr>
<td>PCR</td>
<td>Lymphozyten (EDTA-Blut)</td>
<td>Liquor, Gewebe, Serum/Plasma</td>
<td></td>
</tr>
</tbody>
</table>

Bearbeiter*in: Dr. Gentner-Göbel, Eva
Freigeberr*in: Prof. Dr. Stammlinger, Thomas
ID: 22223
Revision: 005/12/09, 2022
Seite: 49 von 173
<table>
<thead>
<tr>
<th>Bearbeiter*in</th>
<th>Freigaber*in</th>
<th>ID</th>
<th>Revision</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Gentner-Göbel, Eva</td>
<td>Prof. Dr. Stamminger, Thomas</td>
<td>22223</td>
<td>005/12.09.2022</td>
<td>50 von 173</td>
</tr>
</tbody>
</table>
Nachweis spezifischer Antikörper

<table>
<thead>
<tr>
<th>Methode</th>
<th>Probenmaterial/Transport</th>
<th>Ergebnis/Einheit</th>
<th>Anmerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neuralsationstest (NT)</td>
<td></td>
<td></td>
<td>nicht verfügbar</td>
</tr>
<tr>
<td>IFT/ELISA/Immunoblot/Lineassay, IgKlassen gegen versch. virale Ag, Avidität: IgG-Ak</td>
<td>Serum, Liquor</td>
<td>pos/neg Titer</td>
<td>Standardmethode</td>
</tr>
</tbody>
</table>

Nachweis heterophiler Antikörper

<table>
<thead>
<tr>
<th>Methode</th>
<th>Probenmaterial/Transport</th>
<th>Ergebnis/Einheit</th>
<th>Anmerkungen</th>
</tr>
</thead>
</table>

7.7.4 Untersuchungsindikationen und Materialien

- Bestätigung oder Ausschluss einer akuten EBV-Infektion beim Krankheitsbild Mononukleose. Ergänzende Diagnostik bei Hepatitiden unklarer Genese; bei Lymphadenopathien und unklaren neurologischen Erkrankungen Schnelltests auf heterophile Antikörper, virusspezifische Antikörper gegen VCA (IgM, IgG) und EBNA-1 (im Serum)
- EBV-Status Empfänger/Spender vor Transplantation: nur VCA-IgG notwendig (im Serum)
- Diagnose, Therapie- und Verlaufskontrolle bei Nasopharynxkarzinom: VCA-IgA, EA-IgA (im Serum)
- Diagnose oder Monitoring bei Risiko für EBV-assoziierte Tumoren: histologischer oder zytologischer Nachweis von EBV-Antigenen oder EBV-kodierten kleinen RNAs (EBER-RNA) aus Gewebe/Zellen und quantitativen EBV-DNA-Nachweis mit PCR aus EDTA-Blut bei Risikopatienten für PTLD
- ZNS-Manifestation (Meningoencephalitis bei Primärinfektion, primäre ZNS-Lymphome bei Immunsupprimierten): Nachweis von EBV-DNA im Liquor mit PCR.

7.7.5 Virologische Interpretationen und klinische Bedeutung

Trägerstatus nach abgelaufener Primärinfektion

- Antikörper (IgG) gegen VCA: positiv und hochavide
- Antikörper gegen EBNA-1: positiv (allerdings sind bei ca. 5% der Infizierten keine EBNA-1-Antikörper nachweisbar; hier ist die abgelaufene Infektion durch p18-IgG im Immunoblot oder Lineassay mit rekombinanten Antigenen erkennbar)

Typische Konstellation bei Primärinfektion

- Anti-VCA-IgG positiv und niedrigavide
- Anti-VCA-IgG positiv (nicht obligat)
- Anti-EBNA-1 negativ
- P18-IgG im Immunoblot oder Lineassay mit rekombinanten Antigenen negativ
- Heterophile Antikörper bei IM (recht spezifisch, aber wenig sensitiv, s. u.)

Prothrierte Primärinfektion/Reaktivierte Infektion (Serologie zum Teil identisch mit Primärinfektion)

- Anti-VCA-IgG hochpositiv und hochavide
- Anti-VCA-IgG negativ oder schwächer positiv

<table>
<thead>
<tr>
<th>Bearbeiter*in</th>
<th>Freigabe*in</th>
<th>ID</th>
<th>Revision</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Gentner-Göbel, Eva</td>
<td>Prof. Dr. Stamminger, Thomas</td>
<td>22222</td>
<td>005/12.09.2022</td>
<td>51 von 73</td>
</tr>
</tbody>
</table>
- Anti-VCA-IgA positiv im Verlauf
- Anti-EA positiv
- Anti-EBNA-1 positiv; bei massiver Immunsuppression häufig negativ
- heterophile Antikörper negativ
- EBV-PCR positiv (EDTA-Plasma)

Reaktivierung von Primärinfektion evtl. auch durch Vorbeufinde oder Avidität der Antikörper (hochavide Antikörper bei Reaktivierung) zu differenzieren.

Nasopharynxkarzinom
- Anti-VCA-IgG hochpositiv
- Anti-VCA-IgA hochpositiv
- Anti-EA-IgA positiv
- Anti-EA-IgG hochpositiv
- Anti-EBNA-1 positiv
Lymphome
• Anti-VCA-IgG hochpositiv
• Anti-EA-IgG hochpositiv
• Anti-EBNA positiv
• histologischer Nachweis von EBNA-1, LMP und/oder EBER im Biopsiematerial
• sehr hohe Anzahl von EBV-Genomkopien/ml EDTA-Blut

7.7.6 Besondere diagnostische Probleme
• Serologie nach EBV-Infektion zum Teil sehr variabel, Qualität kommerziell erhältlicher Tests sehr unterschiedlich; Goldstandard ist die Immunfluoreszenz.
• In etwa 9% aller Fälle wird kein Anti-EBNA-1 gebildet oder der Antikörper über die Jahre verloren; in etwa 10% aller Fälle wird bei der Primärinfektion kein IgM nachgewiesen (Verwechslung zwischen Primärinfektion und abgelaufen Infektion)
• Serologische Diagnostik schwierig bei immunsupprimierten Patienten (Anti-EBNA-1-Verlust kann Primärinfektion vortäuschen; hier können Anti-P18-Bestimmung und Aktivitätsmessung helfen) und sinnlos bei therapeutischer Immunglobulingabe. Hier ist die quantitative PCR (EDTA-Plasma) nötig. Der Ausschluss antizellulärer Reaktionen im IFT erfordert parallele Probe mit EBV-negativen Zelllinien. Antizellulär reagierende Seren, die im IFT nicht auswertbar sind, können durch Immunoblots oder Lineassays mit rekombinanten Antigenen richtig diagnostiziert werden.
• EBV-Infektionen führen zu polyklonaler Stimmulierung und können mitunter serologisch andere Infektionen vortäuschen. Häufig findet sich ein CMV-IgM bei EBV-Primärinfektion.
• Der Nachweis EBV-typischer heterophiler Antikörper (Paul-Bunnell-Test, Mononukleose-Schnelltests) korreliert zwar gut mit der klassischen infektiösen Mononukleose, ist aber bei atypischen und milden Verläufen häufig negativ, insbesondere bei Kindern.
• Ein klinisches Krankheitsbild konnte der EBV-Reaktivierung beim Immungsunden bisher nicht zugeordnet werden.

7.7.7 Meldepflicht
keine

7.8 Frühsommer-Meningoenzephalitis (FSME)-Virus (Familie: Flaviviridae)

7.8.1 Erreger und Infektion

7.8.1.1 Virus
Umhülltes, wenig umweltresistentes Viruspartikel (50 nm). Das isometrische Kapsid besteht aus nur einem viralen Strukturprotein und umschließt als Genom eine Positivstrang-RNA (ca. 10,5 kb). Die Hülle enthält zwei weitere virale Strukturproteine: M-(Membran-) und E-(Envelope-) Protein (Hämagglutinin), welches im Wirt
protektive Antikörper induziert. Ort der Virusvermehrung ist das Zytoplasma der Wirtszelle. Es existieren drei nahe verwandte Subtypen, welche kreuzneutralisierende, d.h. schützende Antikörper hervorrufen.

7.8.1.2 Epidemiologie

7.8.1.3 Infektionsformen

Ein Großteil der Infektionen verläuft inapparent, in 10-30% bi- bzw. monophase Erkrankung. Viruspersistenz im Menschen ist beim europäischen Subtyp nicht bekannt, wohingegen persistierende Infektionen beim Fernöstlichen Subtyp beschrieben werden.

7.8.1.4 Inkubationszeit

Die Inkubationszeit beträgt 1-3 Wochen.
7.8.2 Symptome/Erkrankungen

7.8.3 Diagnostische Methoden

Nachweis von Viren oder Virusbestandteilen (Antigen/Nukleinsäure)

<table>
<thead>
<tr>
<th>Methode</th>
<th>Probenmaterial/Transport</th>
<th>Ergebnis/Einheit</th>
<th>Anmerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virusisolierung</td>
<td>Vollblut, Liquor, Sektionsmaterial (auch in physiologischem NaCl) 24 h, bei 4-20 °C</td>
<td>pos/neg</td>
<td>Testdauer: 4 Tage -3 Wochen, aufwändig, keine Routinemethode, nur in der Frühphase der Infektion sinnvoll</td>
</tr>
<tr>
<td>EM (Nachweis von Viruspartikeln, Einschlusskörpern)</td>
<td></td>
<td></td>
<td>nicht etabliert</td>
</tr>
<tr>
<td>EIA (Nachweis viraler Antigene)</td>
<td></td>
<td></td>
<td>routinemäßig nicht verfügbar</td>
</tr>
<tr>
<td>RT-PCR (nested): nach RNA-Extraktion</td>
<td>Liquor (zellhaltig), Serum, EDTA-Blut, Sektionsmaterial.</td>
<td>pos/neg</td>
<td>Testdauer: 2 Tage nur in der Frühphase der Infektion bzw. bei atypischen Verläufen sinnvoll</td>
</tr>
</tbody>
</table>

Nachweis spezifischer Antikörper

<table>
<thead>
<tr>
<th>Methode</th>
<th>Probenmaterial/Transport</th>
<th>Ergebnis/Einheit</th>
<th>Anmerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT</td>
<td>Serum, Liquor</td>
<td>Titer</td>
<td>Testdauer: 5 Tage Spez: höchst notwendig zum Ausschluss von Kreuzreaktionen, aufwändig</td>
</tr>
<tr>
<td>ELISA: IgM/IgG spezifisch, IgG-Avidität</td>
<td>Serum, Liquor</td>
<td>pos/neg, Einheiten nach Standardkurve</td>
<td>Methode der Wahl: ELISA standardisiert</td>
</tr>
<tr>
<td>Immunoblot (WB)</td>
<td>Serum, Liquor</td>
<td>pos/neg spezifische Banden</td>
<td>nicht standardisiert, aufwändig</td>
</tr>
<tr>
<td>HHT</td>
<td>Serum, Liquor</td>
<td>Titer</td>
<td>Referenzmethode (Ag nicht kommerziell verfügbar)</td>
</tr>
<tr>
<td>KBR</td>
<td>Serum</td>
<td>Titer</td>
<td>kommerziell verfügbar, veraltet Sens: geringe</td>
</tr>
</tbody>
</table>

7.8.4 Untersuchungsindikationen und Materialien

Akute Infektion:

Anamnese: Zeckenstich, Aufenthalt in Endemiegebieten. Methode der Wahl zur Sicherung der Diagnose: spezifische IgM- und IgG-Antikörper im Serum sind zum Zeitpunkt der Hospitalisierung fast immer
Nachweisbar. Im Liquor sind zu Erkrankungsbeginn bei ca. 50% der Fälle keine IgM-Ak vorhanden, sie erscheinen jedoch so gut wie immer innerhalb von 10 Tagen. Der Nachweis viraler Nukleinsäure gelingt fast nur vor der Serokonversion und bei atypischen Verläufen. In Todesfällen ist das Virus im Gehirn und anderen Organen mittels RT-PCR oder Virusisolierung nachweisbar.

Immunität/Impferfolg:

7.8.5 Virologische Interpretationen und klinische Bedeutung

Bei klinischem Verdacht einer FSME:
- **spezifische IgM- und IgG-Ak pos.:** gesicherte Infektion, sofern eine IgM-Ak-Induktion durch Impfung (s. u.) ausgeschlossen ist
- **spezifische IgM- und IgG-Ak neg.:** Kontrolluntersuchung bei Erkrankungsverdacht innerhalb weniger Tage unbedingt erforderlich
- **spezifische IgM pos., IgG neg.:** Verdacht auf FSME, Kontrolleinsendung nach 2-7 Tagen notwendig
- **spezifische IgM neg., IgG pos.:** Immunität. Ausnahmen: passive Immunisierung, Impfdurchbruch, kreuzreaktive Ak (s. u.). Bei niedrigem oder fehlendem IgM kann die Bestimmung der Avidität der IgG-Antikörper zum Nachweis oder Ausschluss einer frischen Infektion hilfreich sein.

7.8.6 Besondere diagnostische Probleme

- Nach den ersten beiden aktiven Teilimpfungen können FSME-IgM-Ak über einige Monate im Serum nachweisbar bleiben. Bei vorangegangener passiver Immunisierung kann der Antikörperanstieg verzögert sein.
- Bei FSME trotz vorangegangener aktiver Immunisierung (Impfdurchbruch) kann es zunächst zum Anstieg der IgG-Ak (ohne IgM) kommen, deshalb bei klinischem Verdacht Kontrolle der IgM-Ak nach ca. 10 Tagen (ggf. PCR aus Serum/Liquor).
- Sowohl im FSME-spezifischen IgG-ELISA als auch im HHT ist eine Kreuzreaktion mit (jedoch nicht schützenden) Ak gegen verwandte Flaviviren möglich. Falls anamnestisch Impfungen gegen andere Flaviviren (z. B. Gelbfieber-, Japan-Enzephalitis-Virus) bzw. Infektionen mit anderen Flaviviren (z. B. Dengue-Fieber) angegeben werden ist zur Feststellung der FSME-Immunität die Durchführung eines FSME-NTs notwendig.
- Bestätigung mittels Western-Blot (insbesondere Nachweis E-Protein-spezifischer Ak) können unspezifische Reaktivität ausschließen, nicht aber Kreuzreaktionen.

Die KBR sollte mangels Sensitivität zur Diagnostik der akuten FSME nicht mehr eingesetzt werden; zur Klärung von Immunität, Impferfolg und fraglichen FSME-Residuen ist sie unbrauchbar.

7.8.7 Meldepflicht

Meldepflichtig nach §7 E-IfSG (Stand: Nov. 1998) namentlich an das Gesundheitsamt.
7.9 Gelbfiebervirus (GFV) (Familie: Flaviviridae)

7.9.1 Erreger und Infektion

7.9.1.1 Virus

7.9.1.2 Epidemiologie

7.9.1.3 Infektionsformen

Das GFV führt zur akuten Gelbfiebererkrankung bei Primärinfektion ohne Persistenz im Menschen. An der Einstichstelle infiziert das Virus Endothelzellen, Monozyten und Makrophagen und wird durch diese zu Lymphknoten transportiert. Aus dem lymphatischen System gelangt das Virus in das Blut. In der virämischen...

Bearbeiter*in	Freigabe*in	ID	Revision	Seite
Dr. Gentner-Göbel, Eva	Prof.Dr. Stamminger, Thomas	22222	005/12.09.2022	57 von 173
Phase vermehrt sich das Virus sehr stark und infiziert lytisch Makrophagen der Leber (von Kupffersche Sternzellen) und Hepatozyten. In einer 2. Phase der Infektionsausbreitung werden häufig auch Gehirn und Nieren befallen. Die Zerstörung der Hepatozyten führt zu vermindelter Produktion der Blutgerinnungsfaktoren, was zu Hämorrhagien in verschiedenen Organen beitragen kann.

7.9.1.4 Inkubationszeit
Die Inkubationszeit beträgt 3-6 Tage.

7.9.2 Symptome/Erkrankungen

7.9.3 Diagnostische Methoden
Nachweis von Viren oder Virusbestandteilen (Antigen/Nukleinsäure)

<table>
<thead>
<tr>
<th>Methode</th>
<th>Probenmaterial/Transport</th>
<th>Ergebnis/Einheit</th>
<th>Anmerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virusisolierung</td>
<td>Heparinblut (sofort auf Eise oder tieckühlen 1-3 Tage; in Trockeneis länger), hämolytisches Blut auch geeignet</td>
<td>pos/neg semiquant. als PFU</td>
<td>Testdauer: 7-14 Tage (bei Passagen; hohe Kosten)</td>
</tr>
<tr>
<td>EM (Nachweis von Viruspartikeln, Einschlusskörpern)</td>
<td>Leberbiopsie postmortal</td>
<td>Councilman bodies</td>
<td></td>
</tr>
<tr>
<td>Ag-Capture-EIA (Nachweis viraler Antigene)</td>
<td>Serum</td>
<td>pos/neg selten durchgeführt, keine Routinemethoden</td>
<td></td>
</tr>
<tr>
<td>IFT: indirekt (mAk) (Nachweis viraler Antigene)</td>
<td>Leberbiopsien oder Autopsiematerial</td>
<td>Routinemethoden</td>
<td></td>
</tr>
<tr>
<td>RT-PCR: nach RNA-Extraktion</td>
<td>EDTA-Blut (PBL), Plasma, Lebergewebe</td>
<td>pos/neg semiquant.</td>
<td>Testdauer: ca. 1-2 Tage (Blut nur bis max. 10 Tage nach Beginn der Erkrankung erfolgversprechend)</td>
</tr>
</tbody>
</table>

Nachweis spezifischer Antikörper

<table>
<thead>
<tr>
<th>Methode</th>
<th>Probenmaterial/Transport</th>
<th>Ergebnis/Einheit</th>
<th>Anmerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT</td>
<td>Serum</td>
<td>Titer</td>
<td>Testdauer: mind. 6 Tage, Immunitätsbestimmung</td>
</tr>
<tr>
<td>ELISA/IIF (virusinfizierte Zellkulturen); IgM/IgG- Differenzierung</td>
<td>Serum</td>
<td>pos/neg IgM/IgG-Titer, ggf. Verlauf</td>
<td>Standardtest</td>
</tr>
<tr>
<td>Immunoblot (WB)</td>
<td>spez. Banden, pos/neg</td>
<td>nicht standardisiert, aufwändig</td>
<td></td>
</tr>
<tr>
<td>HHT</td>
<td>Serum</td>
<td>Titerverlauf</td>
<td></td>
</tr>
</tbody>
</table>
7.9.4 Untersuchungsindikationen und Materialien

Untersuchungen bei akuter Symptomatik sind nur sinnvoll bei entsprechender Reiseanamnese bis längstens 20 Tage nach Verlassen des Gelbfieberendemiegebietes; Virusisolierung und RT-PCR bis maximal 6-10 Tage nach Krankheitsbeginn. RT-PCR aus Blut als Schnelldiagnose und evtl. Notfalldiagnostik ist möglich; zur postmortalen Sicherung der Diagnose kann der Nachweis viraler Antigene z. B. aus der Leber erfolgen (typische Histologie der Leber). DD: andere Hepatitiden, Denguefieber, Leptospirose, andere hämorrhagische Fieber (!)

Immunstatus:
Siehe unter Besondere diagnostische Probleme.

Besonderheiten bei Materialabnahme und Transport:

7.9.5 Virologische Interpretationen und klinische Bedeutung

7.9.6 Besondere diagnostische Probleme

- Ein IgM-Nachweis (bis etwa 3 Monate nach frischer Infektion, maximal bis 18 Monate) und auch Titerbewegungen (4-fach) bei IgG sind nicht immer beweisend für eine akute Gelbfieberinfektion, da wegen starker Kreuzreaktion mit anderen Flaviviren (z. B. bei frischer Denguevirus-Infektion) und auch bei Gelbfieber-Geimpften ähnliche Befunde vorkommen.
- Der HHT-Titerverlauf (mindestens 4-facher Anstieg) ist diagnostisch nicht immer eindeutig (besonders bei Einwohnern von Endemiegebieten), da heterologe Kreuzreaktionen bei anderen akuten Flavivirus-Infektionen möglich sind. Zur weiteren Klärung ist eine vergleichende Austiratation erforderlich.

7.9.7 Meldepflicht

Meldepflicht nach §1fSG namentlich an das Gesundheitsamt und das RKI.
7.10 Hantaviren (Familie: Bunyaviridae)

7.10.1 Erreger und Infektion

7.10.1.1 Virus

7.10.1.2 Epidemiologie

<table>
<thead>
<tr>
<th>Bearbeiter*in</th>
<th>Freigeber*in</th>
<th>ID</th>
<th>Revision</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Gentner-Göbel, Eva</td>
<td>Prof.Dr. Stamminger, Thomas</td>
<td>22222</td>
<td>09/12.09.2022</td>
<td>60 von 173</td>
</tr>
</tbody>
</table>
selten auch bei mit Nagetieren arbeitendem Laborpersonal und Tierpflegern auf. Die Übertragung auf den Menschen erfolgt über den Respirationstrakt durch Staub und Aerosole, die virushaltige Ausscheidungen der inapparent infizierten Nager (Speichel, Kot, Urin) enthalten; eine Mensch-zu-Mensch-Transmission ist eventuell in Einzelfällen möglich (Andes-Virus, Südamerika).

7.10.1.3 Infektionsformen

7.10.1.4 Inkubationszeit

Die Inkubationszeit beträgt 5-35 Tage.

7.10.2 Symptome/Erkrankungen

7.10.3 Diagnostische Methoden

Nachweis von Viren oder Virusbestandteilen (Antigen/Nukleinsäure)

<table>
<thead>
<tr>
<th>Methode</th>
<th>Probenmaterial/Transport</th>
<th>Ergebnis/Einheit</th>
<th>Anmerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virusisolierung</td>
<td>Organe infizierter Tiere</td>
<td>pos/neg</td>
<td>Testdauer: mehrere Wochen, selten erfolgreich, diagnostisch nicht geeignet</td>
</tr>
<tr>
<td></td>
<td>(Mensch: Urin, Biopsimaterial, PBL, BAL)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nachweis von Viruspertikeln,</td>
<td></td>
<td></td>
<td>nicht etabliert</td>
</tr>
<tr>
<td>Einschlusskörpern</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nachweis viraler Antigene</td>
<td>Biopsiaterial</td>
<td>pos/neg</td>
<td>keine Routinetests</td>
</tr>
<tr>
<td>IFT; indirekt Immunhistologie</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT-PCR, Sequenzanalyse</td>
<td>Urin, Biopsiaterial</td>
<td>pos/neg</td>
<td>Testdauer: 24-48 h zur Typisierung Material aus früher klinischer Phase nötig</td>
</tr>
<tr>
<td></td>
<td>PBL, Serum</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nachweis spezifischer Antikörper

<table>
<thead>
<tr>
<th>Methode</th>
<th>Probenmaterial/Transport</th>
<th>Ergebnis/Einheit</th>
<th>Anmerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutralisation (Focus-</td>
<td>Serum</td>
<td>Titer</td>
<td>kein Routinetest</td>
</tr>
<tr>
<td>reduktionsneutralisations-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELISA: IgM (µ-capture) > IgG</td>
<td>Serum</td>
<td>semiquant.</td>
<td>Testdauer: <24 h, kommerziell verfügbar, Methode der Wahl</td>
</tr>
<tr>
<td>Immunoblot (WB)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IFT: IgG/IgM</td>
<td>Titer</td>
<td></td>
<td>Testdauer: <24 h, kommerziell verfügbar</td>
</tr>
<tr>
<td>Immunoblot (WB)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7.10.4 Untersuchungsindikationen und Materialien

7.10.5 Virologische Interpretationen und klinische Bedeutung

7.10.6 Besondere diagnostische Probleme

Die Biodiversität der Hantaviren erschwert die Diagnose. Isolierte IgG-Titer in Endemiegebieten sind hinsichtlich ihrer ätiologischen Bedeutung schwer zu interpretieren, da es sich um Durchsuchungstiter handeln kann.
7.10.7 Meldepflicht
Nach §6 IfSG sind Verdacht, Erkrankung und Tod an virusbedingtem hämorrhagischem Fieber namentlich meldepflichtig durch den behandelten Arzt (an das zuständige Gesundheitsamt). Nach §7 IfSG sind der direkte oder indirekte Nachweis von Hantaviren namentlich meldepflichtig durch das Labor, soweit es Hinweise auf eine akute Infektion gibt.

7.11 Hepatitis-A-Virus (HAV) (Familie: Picornaviridae - Hepatovirus)

7.11.1 Erreger und Infektion

7.11.1.1 Virus
Kleine (ca. 27 nm), äußerst stabile, nicht umhüllte ikosaedrische Partikel mit Positivstrang-RNA (7,5 kb). Es wird zunächst ein Polyprotein translatiert, das dann in Struktur- und Nichtstrukturproteine gespalten wird. Im reifen Viruspartikel wurden bislang drei Virusproteine VP1-VP3 nachgewiesen. Weltweit existiert nur ein Serotyp; bislang wurden 7 Genotypen definiert. Genotyp I herrscht weltweit vor.

7.11.1.2 Epidemiologie

7.11.1.3 Infektionsformen
Nicht-zytopathogene Infektion der Hepatozyten. Die Schädigung der Leberzellen ist Folge eines immunpathologischen Prozesses. Die Infektion verläuft bei Kindern vorwiegend, bei Erwachsenen zu ca. 25%
asymptomatisch. In höherem Alter sind schwere Verläufe möglich bis zur fulminanten, tödlich verlaufenden Hepatitis, zum Teil auf dem Boden einer vorbestehenden chronischen Hepatitis B oder Hepatitis C oder anderer leberschädigender Vorerkrankungen. Die Hepatitis A wird nie chronisch, kann jedoch insbesondere bei Erwachsenen (15%) biphasisch oder protrahiert verlaufen (3-4 Monate und länger).

7.11.1.4 Inkubationszeit

Die Inkubationszeit beträgt 3-5 Wochen (Mittel: 27 Tage).

7.11.2 Symptome/Erkrankungen

7.11.3 Diagnostische Methoden

Nachweis von Viren oder Virusbestandteilen (Antigen/Nukleinsäure)

<table>
<thead>
<tr>
<th>Methode</th>
<th>Probenmaterial/Transport</th>
<th>Ergebnis/Einheit</th>
<th>Anmerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virusisolierung</td>
<td>Stuhl</td>
<td>pos/neg</td>
<td>Testdauer: 6-20 Wochen</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>keine Routinediagnostik</td>
</tr>
<tr>
<td>EM (Nachweis von Viruspartikeln, Einschlusskörpern)</td>
<td>Stuhl</td>
<td>pos/neg</td>
<td>Sens: gering</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Spez: gering</td>
</tr>
<tr>
<td>EIA (Nachweis viraler Antigene)</td>
<td>Stuhl</td>
<td>pos/neg</td>
<td>Sens: hoch</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Spez: hoch</td>
</tr>
<tr>
<td>RT-PCR: nach RNA-Extraktion</td>
<td>Stuhl, Serum</td>
<td>pos/neg</td>
<td>Sens: hoch</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Keine Routinediagnostik</td>
</tr>
</tbody>
</table>

Nachweis spezifischer Antikörper

<table>
<thead>
<tr>
<th>Methode</th>
<th>Probenmaterial/Transport</th>
<th>Ergebnis/Einheit</th>
<th>Anmerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT</td>
<td>Serum</td>
<td>Titer</td>
<td>Keine Routinediagnostik</td>
</tr>
<tr>
<td>Inhibitions-ELISA: Gesamt-Ak</td>
<td>Serum</td>
<td>pos/neg</td>
<td>Standardmethoden</td>
</tr>
<tr>
<td>Anti-y-ELISA: IgM</td>
<td></td>
<td>quant., Units/l</td>
<td>frische Infektion</td>
</tr>
</tbody>
</table>

7.11.4 Untersuchungsindikationen und Materialien

Akute Hepatitis:

Nachweis von Anti-HAV-IgM im Serum. Bei protrahierten klinischen Verläufen kann Anti-HAV-IgM die Diagnose weiter sichern und zur Kontrolle des Infektionsverlaufs dienen.

Immunität:

Gesamtkörper gegen HAV (Anti-HAV) werden zur Feststellung der Immunität nach natürlicher Infektion, bei entsprechender Indikation auch nach Impfung untersucht. Immunität wird ab einer Antikörperkonzentration von 10 U/l angenommen. Über die wahrcheinlich lange Dauer der Immunität (>10 Jahre) nach aktiver Immunisierung kann noch nichts Abschließendes gesagt werden.
Umgebungsuntersuchungen:

7.11.5 Virologische Interpretationen und klinische Bedeutung
- Anti-HAV-IgM ist Zeichen einer akuten oder zumindest kürzlichen Infektion und ist im Zusammenhang mit einer entsprechenden Klinik diagnostisch aussagekräftig.
- Antikörper gegen HAV im Serum ohne Anti-HAV-IgM werden nach früher durchgemachter Infektion, aktiver Impfung oder kurzzeitig nach passiver Immunisierung mit antikörperhaltigem Immunglobulin gefunden.

7.11.6 Besondere diagnostische Probleme
- Zum Nachweis der Immunität nach Impfung müssen Tests verwendet werden, die mindestens 10 U/l Anti-HAV nachweisen können.
- Der HAV-Antigen-Nachweis im Stuhl ist bei Erkrankungsbeginn häufig bereits wieder negativ (PCR bleibt positiv, s. o.).

7.11.7 Meldepflicht
Namentliche Meldepflicht an das Gesundheitsamt besteht nach §6 IfSG für die akute Erkrankung (wie für jede andere akute Virushepatitis), nach §7 IfSG für den direkten oder indirekten Erregernachweis, sofern er auf eine akute Infektion hinweist. Zur Meldung verpflichtet ist im ersten Fall der feststellende Arzt, im zweiten Fall der Leiter des Labors, das den Nachweis geführt hat.
7.12 Hepatitis-B-Virus (HBV) (Familie: Hepadnaviridae)

7.12.1 Erreger und Infektion

7.12.1.1 Virus

Umhülltes, aber relativ resistentes Viruspartikel (45 nm) mit zirkulärem DNA-Genom (3.2 kb). Die Genomreplikation erfolgt über eine reverse Transkription. Überschüssiges Hüllprotein (HBsAg) bildet die 20 nm-Partikel im Serum. Core-Antigen (HBCAg) findet sich als Bestandteil des Virus, aber auch in Hepatozyten. HBeAg ist eine sezernierte Form des Core-Proteins im Serum. Die Virämie im Plasma kann mit bis zu 10^{11} DNA-haltigen Viruspartikel/ml sehr ausgeprägt sein, daneben auch sehr hohe HBs-Antigenämie. HBV ist genetisch mäßig variabel (8 Genotypen A-H, 9 HBsAg-Subtypen).

7.12.1.2 Epidemiologie

Die Übertragung erfolgt durch kontaminiertes Blut (auch nosokomial) und Schleimhautkontakt (sexuelle Übertragung). Die perinatale Übertragung ist in hochendemischen Gebieten mit hoher Prävalenz chronischer Infektion häufig, demgegenüber selten in Gebieten mit niedriger Endemie, also auch in Deutschland. Hohe Endemie in Afrika, Ostasien, Ozeanien; geringe Endemie in Mittel- und Nordeuropa und in Nordamerika. Die Durchseuchung ist in ethnischen Gruppen unterschiedlich. Ca. 50% der Weltbevölkerung sind nach Infektion immun, ca. 5% sind chronische Träger (>300 Millionen). HBV fordert ca. 1 Million Tote pro Jahr infolge einer Leberzirrhose oder eines Leberkarzinoms. In der deutschen Bevölkerung beträgt die Durchseuchung 8%, die Rate chronischer Träger liegt bei ca. 0,6% bei 2000 gemeldeten Neuerkrankungen pro Jahr. Die geschätzte Anzahl jährlicher Neuinfektionen ist höher.

7.12.1.3 Infektionsformen

Es handelt sich um eine nicht-zytogene Infektion der Hepatozyten mit Schädigung der Hepatozyten als Folge eines immunologischen Prozesses (Immunpathogenese).
• Bei Immunkompetenten finden sich oft asymptomatische und selbstlimitierende Infektionen
• Akute Hepatitis mit oder ohne nachfolgende Viruspersistenz
• Bei konnatal infizierten Neugeborenen (90%), Immundefizienten und einigen Prozent gesunder Personen findet sich nach Primärinfektion Viruspersistenz mit wechselnder, oft geringer Symptomatik
• Viruslatenz ist auch nach Ausheilung (HBsAg: negativ, Anti-HBs: positiv) vermutlich häufig. Eine Virusreaktivierung ist unter Immunsuppression auch bei Vorliegen von Anti-HBs möglich.

7.12.1.4 Inkubationszeit
Je nach Infektionsdosis und Eintrittspforte 1-7 Monate, nach letztlich nicht erfolgreicher post-expositioneller Hepatitis-B-Immunglobulin-Gabe beobachtet man häufiger lange Inkubationszeiten.

7.12.2 Symptome/Erkrankungen
Je nach Infektionsdosis, Infektionsweg und Immunitätslage ist der Infektionsverlauf sehr unterschiedlich: Häufig ist ein inapparenter Verlauf mit „stiller Feuung“ bei geringer Infektionsdosis (Schleimhautkontakt). Bei klinisch apparenten Verläufen finden sich in der Prodromalphase häufig Arthralgien, grippeähnliche Beschwerden, gastrointestinale Störungen, selten auch Fieber. Danach kommt es zur akuten, selten zur fulminanten Hepatitis (ca. 0,1-0,5%). Die chronische Hepatitis kann zur Leberzirrhose (HBeAg positiv: 8-10%/Jahr; HBsAg negativ: 2-5%/Jahr) und zum hepatozellulären Karzinom (ohne Zirrhose: 0,1-0,6%/Jahr; mit Zirrhose: 2-7%/Jahr) führen. Gelegentlich treten Immunkomplexerkrankungen wie Periarthritis nodosa oder Glomerulonephritis auf. Eine schwere Immunsuppression kann zur zunächst symptomlosen Virusreaktivierung auch bei Vorliegen von Anti-HBs führen. Der Entzug einer immunsuppressiven Therapie oder eine Immunrekonstitution in dieser Phase kann zur fulminanten Hepatitis führen.

7.12.3 Diagnostische Methoden
Nachweis von Viren oder Virusbestandteilen (Antigen/Nukleinsäure)

<table>
<thead>
<tr>
<th>Methode</th>
<th>Probenmaterial/Transport</th>
<th>Ergebnis/Einheit</th>
<th>Anmerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virusisolierung</td>
<td>Plasma, Serum, 4°C oder Raumtemp.</td>
<td>pos/neg</td>
<td>praktisch nicht verfügbar</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sens: höchst (im Tier)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sens: gering (in Zellkultur)</td>
</tr>
<tr>
<td>EM (Nachweis von Viruspartikeln, Einschlusskörpern)</td>
<td>Plasma, Serum, 4°C oder Raumtemp.</td>
<td>pos/neg</td>
<td>selten durchgeführt</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sens: gering</td>
</tr>
<tr>
<td>Endogene DNA-Polymerase (Nachweis viraler Enzyme)</td>
<td>Serum, (4°C oder gefroren</td>
<td>Semiquant.</td>
<td>selten</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sens: gering (für Resistenzbestimmung geeignet)</td>
</tr>
<tr>
<td>Nachweis viraler Antigene HBsAg (EIA)</td>
<td>Serum/Plasma, 4°C oder gefroren</td>
<td>pos/neg quant. (IU/ml)</td>
<td>Sens: höchst</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Spez: hoch</td>
</tr>
<tr>
<td>HbsAg (Elektroimmun-diffusion nach Laurell)</td>
<td>µ/ml</td>
<td></td>
<td>Sens: gering, genau, gut normiert</td>
</tr>
<tr>
<td>HBeAg (EIA)</td>
<td></td>
<td>pos/neg selten quant.</td>
<td>Sens: hoch</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Spez: hoch nur nach HBsAg-Nachweis</td>
</tr>
<tr>
<td>HBsAg (Immunhistologie)</td>
<td>Leberbiopsie</td>
<td>pos/neg Milchglashepatozyten</td>
<td>Trägerstatus</td>
</tr>
<tr>
<td>HBsAg (Immunhistologie)</td>
<td>Leberbiopsie</td>
<td>pos/neg Milchglashepatozyten</td>
<td>Trägerstatus</td>
</tr>
</tbody>
</table>

Bearbeiter*in: Dr. Gentner-Göbel, Eva
Freigabe*in: Prof. Dr. Stamminger, Thomas
ID: 22223
Revision: 09/12.09.2022
Seite: 67 von 173

Ausgedruckt ist das Dokument eine unkontrollierte Kopie und unterliegt nicht dem Änderungsdienst
Präanalytik-Handbuch ANL-5.5.1.2 OE

HBeAg (IFT oder andere Immunhistologie)
Leberbiopsie, schokgefahren oder fixiert
poS/neg, semiquant. (nukleär oder zytoplasmatisch)
erfahrener Pathologe, Hinweis auf Virusreplikation

Nachweis viraler Nukleinsäure, ISH
Serum, Plasma, Leber
Pg/ml oder Genome/ml
Sens: mittel, teilweise standardisiert, gut qualifizierbar

PCR
qualitativ oder quant.
Sens: höchst, standardisiert

Southern Blot oder spezielle PCR-Verfahren
Lebergewebe gefroren oder frisch
qualitativ oder quant.
erkennt integrierte DNA und replikative Formen

Nachweis spezifischer Antikörper

Methode	**Probenmaterial/Transport**	**Ergebnis/Einheit**	**Anmerkungen**
Neutralisation der Infektiosität | Serum/Plasma, 4°C/gefroren | kaum verfügbar

Anti-HBs (ELISA): Gesamt-Ig
Serum/Plasma
poS/neg quant. (U/l)
standardisiert

Anti-HBc (ELISA): Gesamt-Ig
Serum/Plasma
poS/neg
standardisiert

Anti-HBc-IgM (ELISA)
Serum/Plasma
poS/neg quant. (PEI-Einheit/ml oder Index)
Sens: nach Test wechselnd, nur bei pos Anti-HBc

Anti-HBe (ELISA)
qualitativ
bei pos Anti-HBc

7.12.4 Untersuchungsindikationen und Materialien

Verdacht auf Hepatitis:
Zunächst Serum auf Gesamt-Anti-HBc testen. Falls positiv, HBsAg qualitativ und Anti-HBc-IgM bestimmen. Bei dringendem Verdacht auf akute Hepatitis B sofort auf HBsAg und Anti-HBc-IgM testen.

Verlaufskontrolle:
Bei akuter Hepatitis B zu Beginn HBsAg oder HBV-DNA quantitativ oder HBeAg bestimmen. Nach 6 Wochen Kontrolle. Danach vierteljährliche Kontrollen unter Einschluss von Anti-HBs, bis HBsAg negativ ist. Die Kinematik des HBsAg-Abfalls ist prognostisch bedeutsam (s. u.).

Verdacht auf chronische Hepatitis:
Bestimmung von HBsAg und Anti-HBc im Serum oder Plasma. Wenn positiv, HBeAg und Anti-HBe qualitativ sowie Anti-HBc-IgM und HBV-DNA quantitativ; vierteljährlich Verlaufskontrolle der HBV-DNA. Therapiemonitoring s. u.

Symptomarme HBV-Träger:
Bei zufällig gefundenem HBsAg (Blutspender, Schwangeren-screening) Anti-HBc bestimmen. Falls Anti-HBc negativ, HBsAg-Befund durch Wiederholung möglichst mit einem anderen Test (z. B. Bestätigungstest) bestätigen und/oder HBV-DNA bestimmen, danach gleiches Programm wie bei chronischer Hepatitis B durchführen. Nach 2 Jahren Kontrollen reduzieren (1-mal jährlich), wenn keine Zeichen einer Lebererkrankung oder hoher Virusreplikation beobachtet wurden. In den westlichen Industrieländern kann damit gerechnet werden, dass 1-2% Jähr der Träger spontan HBsAg-negativ werden.

Vor Immunsuppression:
Auf Anti-HBc und HBsAg untersuchen. Wenn positiv, alle 4 Wochen HBV-DNA mittels PCR quantitativ und/oder HBsAg bestimmen wegen der Gefahr einer klinisch zunächst inapparenten Reaktivierung.
Infektiosität:

Umgebungsuntersuchungen:
Bei nicht immunen Kontaktpersonen, die als Erregerquelle in Frage kommen, ist auf HBsAg und Anti-Hbc zu testen. Bei Anti-Hbc-Positivität ohne HBsAg ist auf Anti-HBs zu prüfen. Infektketten lassen sich durch Sequenzierung von PCR-Produkten, insbesondere des PräS/S-Bereichs, verifizieren. Serologische Subtypisierung des HBsAg bzw. Anti-HBs ist in Speziallabors möglich, aber nur bei unterschiedlichem Subtyp aussagekräftig; die Methode hat zugunsten der Sequenzierung und Genotypisierung stark an Bedeutung abgenommen.

Immunisierung:
Vor Impfung sind Personen mit Expositionsrisiko auf Anti-Hbc zu untersuchen. Bei positivem Anti-Hbc wird weiter auf Anti-HBs, bei negativem Ausfall dieses Testes auf HBsAg untersucht. Nach Impfung sind Personen mit erhöhtem Risiko (z.B. medizinisches Personal) zur Erfolgskontrolle 4 Wochen nach der 3. Impfung quantitativ auf Anti-HBs zu untersuchen.

Material, Transport und Lagerung:
Als Material ist Serum oder auch EDTA-Plasma geeignet. Abgesehen von der diagnostisch wenig bedeutsamen endogenen DNA-Polymerase sind alle HBV-Marker relativ wärmestabil. Lagerung bei 4°C oder Raumtemperatur für einige Tage ist unproblematisch, solange Bakterienwachstum unterbleibt. Starke Hämolyse beeinträchtigt unter Umständen die Funktionsfähigkeit der ELISAs.

Notfalldiagnostik:
Einige HBsAg-Tests erlauben eine Testung innerhalb von 2 Stunden, sie sind daher für die Notfalldiagnostik geeignet. Die Indikation ergibt sich nach Nadelstichverletzungen (beim „Donor“) sowie bei Risikopersonen ohne Vorfeld vor Operationen, Dialyse, vor Entbindung u.ä..

7.12.5 Virologische Interpretationen und klinische Bedeutung

Akute Hepatitis:
HBsAg ist meistens (aber nicht immer) positiv. Anti-Hbc-IgM >500 PEI-Einheiten/ml weist auf akute Hepatitis B hin. Bei Glutamat-Pyruvat-Transaminase (GPT) >300 U/l und positivem HBsAg, aber Anti-Hbc-IgM >50 U/l handelt es sich wahrscheinlich um eine nicht direkt HBV-bedingte Leberschädigung bei HBsAg-Trägertum.

Verlauf:
Wenn die Infektion ausheilt, fällt HBsAg innerhalb von 6 Wochen um >50%, HBV-DNA um >Faktor 100, HBeAg wird negativ. Vollständiges Verschwinden des HBsAg kann bis zu einem Jahr dauern. Anti-HBe und Anti-HBs erscheinen in aller Regel in der Rekonvaleszenz. Während Anti-HBe nach einigen Jahren verschwindet, bleiben Anti-HBs und Anti-Hbc meist lebenslang nachweisbar.
Chronische Hepatitis:
(Erstdiagnose) Bei positivem HBsAg und mäßig positivem Anti-HBc-IgM (10-500 PEI-Einheiten/ml) ist die Erkrankung vermutlich durch HBV hervorgerufen. Mischinfektionen mit HCV und HDV sowie eine Autoimmunhepatitis sind selten. HBV-DNA ist meistens schon mittels Hybridisierung, fast immer durch PCR, HBeAg oft nachweisbar. Typisch ist ein fluktuierender Verlauf mit Ruhephasen, in denen nur HBsAg und Anti-HBc positiv sind, nicht aber Anti-HBc-IgM (<10 U/ml) und HBV-DNA niedrig (<3 pg/ml). Eine Reaktivierung beginnt mit einem HBV-DNA-Anstieg gefolgt von GPT-Erhöhung und dann von Anti-HBc-IgM-Anstieg. Daher sollen auch symptomarme HBsAg-Träger für ca. 2 Jahre alle 3 Monate auf GPT und Anti-HBc-IgM getestet werden. Ein positives HBeAg spricht für starke Virusvermehrung und hohe Virämie. Das Verschwinden von HBeAg ist oft mit einem vorübergehenden GPT-Anstieg und einem Abfall der Virämie verbunden. Nach längerem chronischem Verlauf treten Virusmutanten auf, die zu keiner HBeAg-Bildung mehr führen. Diese Patienten sind meist Anti-HBe-positiv und können zugleich eine hohe Virämie (10^6-10^9/ml) aufweisen.
Ein Gewebeumbau der Leber kann nicht virologisch, sondern nur histologisch bestimmt werden. Selbst bei HBsAg oder HBV-DNA-Nachweis im Serum kann eine immunohistologische Untersuchung auf HBsAg und/oder HBeAg negativ sein. Bei einem immuntoleranten Zustand findet sich eine starke Anfärbung von HBsAg im Zytoplasma und von HBeAg im Zellkern.
Eine Leberzirrhose oder ein Leberkarzinom kann durch HBV hervorgerufen sein, ohne dass HBsAg und HBV-DNA im Serum nachweisbar sind. Im Tumorgewebe ist dann integrierte HBV-DNA durch Southern Blot nachweisbar, im Serum ist meistens, aber nicht immer Anti-HBc positiv.
Symptomarme HBV-Träger:
Es gibt zwei unterschiedliche Trägerstadien:

- Der „gesunde“ HBsAg-Träger ist HBeAg-negativ, Anti-HBc-IgM negativ und weist bei Verwendung einer quantitativen PCR meist HBV-DNA-Werte von 10^2 bis 10^5 Genomen/ml auf (HBV-DNA im Hybridisierungstest oft negativ).

- Im *immuntoleranten Status* sind jahrelang hohe Konzentrationen von HBsAg (>30 000 U/ml), HBeAg (>2000 PEI-Einheiten/ml), HBV-DNA (>3000 pg/ml bzw. 10^5 Genome/ml und relativ niedrige GPT (<60 U/l) typisch. Ein ähnlicher Zustand liegt auch für einige Wochen vor Ausbruch einer akuten Hepatitis B vor, hier aber ohne Anti-HBc. Der immuntolerante Status geht oft in den HBsAg-Trägerzustand über. Während dieser Vorgänge sind die serologischen Parameter wechselnd, und oft ist entzündliche Aktivität vorhanden. Unter Immunsuppression kann die HBV-Replikation reaktivieren.

Reaktivierung:

Infektiosität:
Bei HBe-Ag-positiven immuntoleranten HBV-Trägern sind meist $>10^8$ infektiöse Einheiten/ml Serum vorhanden. Die Virusgenomzahl liegt typischerweise bei 10^9-10^{10} pro ml Serum. Blut dieser Personen ist hochinfektiös, Speichel und Sperma etwa um den Faktor 1000 weniger. Bei negativem HBeAg, gelegentlich auch bei niedrig positivem HBeAg, liegt die Genomzahl meist unter 10^5/ml, was hinsichtlich der Infektiosität erheblich geringer ist als bei positivem, da keine Konsequenzen für die Arbeit und Berufsleben bestehen (siehe dazu die Empfehlungen der DVV bezüglich Tätigkeits einschränkungen im medizinischen Bereich). Hohe Infektiosität liegt bereits in den 2-3 Monaten vor Ausbruch einer akuten Hepatitis vor.

Immunität:
Immunität ist gegeben, wenn Anti-HBs über 10 IU/l liegt. Ohne vorherige Impfung muss auch Anti-HBc positiv sein. Wenn Anti-HBs nach kompletter Impfung negativ bleibt, sollte bei fehlender Voruntersuchung immer auf Anti-HBc und HbsAg getestet werden. Ist beides negativ, erfolgt erneute Impfung. Anti-HBs in Gegenwart von HBsAg oder HBV-DNA weist auf das Vorliegen von Escape-Mutanten hin.

HBV-assoziiertes Leberkarzinom:
Nachweis integrierter HBV-DNA (Southern Blot) in Speziallabors (häufig sind HBsAg und Anti-HBc positiv).

7.12.6 Besondere diagnostische Probleme

Kontamination:
Hepatitis-B-positive Proben können extrem hohe Konzentrationen von HBsAg und HBV-DNA enthalten. HBsAg erreicht EIA-Titer von 2×10^9. Kreuzkontamination bei der Probenentnahme und -handhabung (automatische Pipettiergeräte ohne Nadelwechsel) vermeiden! Die Titer der anderen Marker liegen im Allgemeinen unter 2×10^6.

Quantifizierung der HBV-DNA:
Empfohlen wird die Verwendung der internationalen Einheiten der WHO. 1 IU entspricht ca. 5 Genomen bzw. DNA-Molekülen. Qualitative Bestimmung mit hoher Empfindlichkeit (ca. 20 IU/ml Nachweisgrenze) sind nur
zur Erstdiagnose sinnvoll, wenn die Serologie nicht klar ist oder eine sehr frühe Infektionsphase vermutet wird. Quantitative Tests müssen einen breiten Messbereich von 10²-10¹⁴/ml aufweisen. Evtl. vorverdünnen.

Genotypen, Varianten:
Genotypisierung und Erkennung von Lamivudinresistenten Varianten ist durch Hybridisierung mittels käuflicher Testskits möglich, noch besser durch Sequenzierung. Von Interesse sind HBsAg-Escape-Mutanten im Bereich der Aminosäuren 100-160 bei gleichzeitig vorhandenem Anti-HBs, die durch Sequenzierung erkannt werden können. Präcore und Core-Promotor-Varianten sind oft mit erhöhter Pathogenität verbunden.

Positives Anti-HBc bei negativem HBsAg und Anti-HBs:
- Befund kann unspezifisch sein, wenn kein weiterer HBV-Marker positiv ist (z. B. Anti-HBe oder HBV-DNA).
- HBV-Trägerstatus ohne nachweisbares HBsAg (Escape-Mutanten, Immunkomplexe, sehr niedriger HBsAg-Titer).
- Zustand nach akuter oder bei inapparenter frischer HBV-Infektion, wobei Anti-HBs meistens noch erscheinen wird; Anti-HBc-IgM sollte noch positiv sein.
- Restzustand nach lange zurückliegender HBV-Infektion; Anti-HBc-IgM sollte negativ sein.
- Anti-HBc wurde durch Immunglobulingabe oder transplazentar zugeführt.

Positives Anti-HBs bei negativem Anti-HBC:

Infektiosität:
- HBsAg-positiv bedeutet nicht automatisch hohe Infektiosität oder Erkrankung der Leber. Bei der Unterrichtung der Betroffenen werden oft übertriebene Besorgnisse geweckt.
- Qualitativ positive PCR bedeutet nicht automatisch hohe Infektiosität, negative PCR-Ergebnisse schließen eine HBV-Infektion von Blutspenden nicht sicher aus.

Prognose:
- Anti-HBe-Positivität schließt weder eine Lebererkrankung noch eine hochgradige Virämie aus. Bei Vorliegen der so genannten Präcore-Mutanten (HBe-minus-Mutanten), die nicht zu einer HBsAg-Synthese in der Lage sind, können auch bei positivem Anti-HBe eine symptomatische chronische Hepatitis und/oder auch deutlich positive HBV-DNA-Werte vorhanden sein (>10⁶ Genome/ml).
- Da bei chronischer HBV-Infektion die Krankheitsaktivität häufig wechselt, sind regelmäßige Wiederholungsuntersuchungen (in etwa 3-monatigen Abständen) erforderlich.
- Bei bereits infizierten Neugeborenen oder Lebertransplantierten kann die aktive bzw. passive Immunisierung zur Selektion von Mutanten mit veränderten HBsAg-Hauptepitopen („Escape-Mutanten“) führen. HBsAg und Anti-HBs liegen dann gleichzeitig vor.
- Anti-HBC-positive Patienten mit oder ohne HBsAg oder Anti-HBs reaktivieren unter Immunsuppression die HBV-Vermehrung, bleiben zunächst symptomlos, aber entwickeln eine schwere, oft tödliche Hepatitis bei Rekonstitution der T-Zellen-Immunkompensation.
7.12.7 Meldepflicht

Namentliche Meldepflicht an das Gesundheitsamt besteht nach §6 IfSG für die akute Erkrankung (wie für jede andere akute Virushepatitis), nach §7 IfSG für den direkten oder indirekten Erregernachweis, sofern er auf eine akute Infektion hinweist. Zur Meldung verpflichtet ist im ersten Fall der feststellende Arzt, im zweiten Fall der Leiter des Labs als den Nachweis geführt hat.

7.13 Hepatitis-C-Virus (HCV) (Familie: Flaviviridae - Hepacivirus)

7.13.1 Erreger und Infektion

7.13.1.1 Virus

7.13.1.2 Epidemiologie

7.13.1.3 Infektionsformen

Die Primärinfektion erfolgt meist inapparent oder mit milder Symptomatik. Sie geht aber in über 70% der Fälle in eine persistierende Infektion über (meist symptomlose Träger).

7.13.1.4 Inkubationszeit

Die Inkubationszeit beträgt 2–26 Wochen bis zur ersten GPT-Erhöhung.
7.13.2 Symptome/Erkrankungen

7.13.3 Diagnostische Methoden

Nachweis von Viren oder Virusbestandteilen (Antigen/Nukleinsäure)

<table>
<thead>
<tr>
<th>Methode</th>
<th>Probenmaterial/Transport</th>
<th>Ergebnis/Einheit</th>
<th>Anmerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virusisolierung</td>
<td>Serum/Plasma</td>
<td>pos/neg</td>
<td>möglich, nicht verfügbar</td>
</tr>
<tr>
<td>EIA (Nachweis viraler Core-Proteine)</td>
<td>qualitativ/quantitativ</td>
<td>Sens: mittel</td>
<td></td>
</tr>
<tr>
<td>RT-PCR: nach RNA-Extraktion</td>
<td>Serum/Lebergewebe</td>
<td>pos/neg</td>
<td>Sens: hoch</td>
</tr>
<tr>
<td>Genosubtypisierung Sequenzierung</td>
<td>PCR-Amplifikat</td>
<td>Genotyp Mutation</td>
<td>Spez: hoch</td>
</tr>
<tr>
<td>DNA-Hybridisierung Quantitative PCR</td>
<td>Serum</td>
<td>Genome/ml</td>
<td>Sens: mittel</td>
</tr>
</tbody>
</table>

Nachweis spezifischer Antikörper

<table>
<thead>
<tr>
<th>Methode</th>
<th>Probenmaterial/Transport</th>
<th>Ergebnis/Einheit</th>
<th>Anmerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutrualisation</td>
<td>Serum/Plasma</td>
<td>pos/neg</td>
<td>Standardsuchtest</td>
</tr>
<tr>
<td>ELISA: Mischantigen, mit Einzelantigenen</td>
<td>EDTA-Plasma</td>
<td>Serotyp</td>
<td>Bestätigungstest</td>
</tr>
<tr>
<td>ELISA: mit serotypischem Peptiden</td>
<td>Serum/Plasma</td>
<td>pos/neg</td>
<td>Subtypisierung nicht möglich</td>
</tr>
</tbody>
</table>

7.13.4 Untersuchungsindikationen und Materialien

7.13.5 Virologische Interpretationen und klinische Bedeutung

- Spezifitätsgesicherter Anti-HCV-Nachweis beweist Vorliegen einer aktiven oder früheren HCV-Infektion.
7.13.6 Besondere diagnostische Probleme

- Ein negatives Ergebnis im Anti-HCV-Test schließt eine frische HCV-Infektion nicht aus. In diesen Fällen ist die erneute Untersuchung in Folgeserien und der HCV-RNA- oder HCV-Core-Antigen-Nachweis notwendig.
- Eine HCV-Infektion ohne GPT-Erhöhung schließt eine schwere Lebererkrankung nicht aus.

7.13.7 Meldepflicht

Meldepflicht nach § 6 u. 7 IfSG namentlich an das Gesundheitsamt, d. h. jede erstmalig diagnostizierte Hepatitis C ist meldepflichtig (unabhängig davon, ob akut erkrankt oder bereits chronisch).
7.14 Hepatitis-D-Virus (HDV) (subvirales Agens - Deltavirus)

7.14.1 Erreger und Infektion

7.14.1.1 Virus

Defektes Virus mit zirkulärer Negativstrang-RNA (1,75 kb), die für ein Core-Protein (HD-Antigen) kodiert, nicht aber für ein Hüllprotein, Ausschleusung und Infektiosität sind von gleichzeitig vorhandenem HBV abhängig, welches die Hüllproteine (HBsAg) liefert. Die virale RNA repliziert mittels zellulärer RNA-Polymerase ähnlich wie Viroide und besitzt eine Ribozymaktivität. Das Virus ist genetisch sehr variabel; es existieren die Genotypen I-III.

7.14.1.2 Epidemiologie

7.14.1.3 Infektionsformen

Koinfektion mit HBV in empfänglichem Wirt oder Superinfektion eines HBV-Trägers. Persistenz und Elimination zusammen mit der HBV-Infektion.

7.14.1.4 Inkubationszeit

Bei simultaner Infektion mit HBV 4 Wochen bis 8 Monate

7.14.2 Symptome/Erkrankungen

Bei simultaner Infektion Verlauf wie bei Hepatitis B allein, bei Superinfektionen kommt es häufig zu schweren, nicht selten fulminanten Verläufen, 70-90% Chronizität und häufigem Übergang in die Leberzirrhose.
7.14.3 Diagnostische Methoden

Nachweis von Viren oder Virusbestandteilen (Antigen/Nukleinsäure)

<table>
<thead>
<tr>
<th>Methode</th>
<th>Probenmaterial/Transport</th>
<th>Ergebnis/Einheit</th>
<th>Anmerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virusisolierung</td>
<td>Serum</td>
<td></td>
<td>sehr schwierig</td>
</tr>
<tr>
<td>EM (Nachweis von Viruspartikeln, Einschlusskörpern)</td>
<td>Serum, Lebergewebe</td>
<td>pos/neg</td>
<td>nicht verfügbar</td>
</tr>
<tr>
<td>EIA (Nach-weis viraler Antigene)</td>
<td>Serum, Lebergewebe (eingefroren)</td>
<td>pos/neg</td>
<td>EIA nur in der Frühphase kurz pos</td>
</tr>
<tr>
<td>RT-PCR</td>
<td>Serum, Lebergewebe (eingefroren)</td>
<td>pos/neg</td>
<td>Sens: hoch</td>
</tr>
</tbody>
</table>

Nachweis spezifischer Antikörper

<table>
<thead>
<tr>
<th>Methode</th>
<th>Probenmaterial/Transport</th>
<th>Ergebnis/Einheit</th>
<th>Anmerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELISA: Gesamtantikörper, Anti-μ-capture-Test: Anti-HDV-IgM</td>
<td>Serum</td>
<td>pos/neg</td>
<td>Standardtest, einfach nur bei pos HBsAg indiziert</td>
</tr>
</tbody>
</table>

7.14.4 Untersuchungsindikationen und Materialien

7.14.5 Virologische Interpretationen und klinische Bedeutung

7.14.6 Besondere diagnostische Probleme

- Die Untersuchung zwischen akuter und chronischer Infektion ist schwierig.
- In der Frühphase der klinischen Erkrankung bei Koinfektion ist Anti-HDV oft negativ.
- HDV-Superinfektionen können (vorübergehend) zur Absenkung des HBSAg führen.
- Drogenabhängige haben häufig Mischinfektionen mit HCV und/oder HIV.
- Testkits für die Bestimmung von HDV-RNA sind nicht verfügbar.

7.14.7 Meldepflicht

Namentliche Meldepflicht an das Gesundheitsamt besteht nach § 6 IfSG für die akute Erkrankung (wie für jede andere akute Virushepatitis), nach § 7 IfSG für den direkten oder indirekten Erregernachweis, sofern er auf eine akute Infektion hinweist. Zur Meldung verpflichtet ist im ersten Fall der feststellende Arzt, im zweiten Fall der Leiter des Labors, der den Nachweis geführt hat.

7.15 Hepatitis-E-Virus (HEV) (verwandt mit Caliciviridae)

7.15.1 Erreger und Infektion

7.15.1.1 Virus

Ein ikosaedrisches Kapsid (27-34 nm) ohne Hülle enthält eine Positivstrang-RNA (7,2 kb). Die Genomorganisation ist ähnlich wie bei Caliciviren, aber die Domänen der Nichtstruktur-Proteine ähneln denen der Rubiviren. ORF1 kodiert für die Nichtstrukturproteine, ORF2 für das Kapsid und ORF3 für ein Protein mit unbekannter Funktion. Die genetische Variabilität ist gering. Es existieren ein Serotyp, aber mehrere Genotypen.

7.15.1.2 Epidemiologie

7.15.1.3 Infektionsformen
Akute selbstlimitierende Infektion der Hepatozyten, keine Persistenz.

7.15.1.4 Inkubationszeit
Die Inkubationszeit beträgt 15 bis 64 Tage.

7.15.2 Symptome/Erkrankungen
Die akute Virushepatitis ist klinisch nicht unterscheidbar von akuten Hepatitiden durch Hepatitis-A-, -B- oder -C-Viren. Aus der Prodromalphase mit Übelkeit, Erbrechen und Fieber erfolgt ein abrupter Übergang in das ikterische Stadium. Fulminante Verläufe treten in etwa 1% auf und sind gehäuft bei Schwangeren (bis 20%).

7.15.3 Diagnostische Methoden
Nachweis von Viren oder Virusbestandteilen (Antigen/Nukleinsäure)

<table>
<thead>
<tr>
<th>Methode</th>
<th>Probenmaterial/Transport</th>
<th>Ergebnis/Einheit</th>
<th>Anmerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virusisolierung</td>
<td>Serum, Stuhl</td>
<td>sehr aufwändig</td>
<td></td>
</tr>
<tr>
<td>EM (Nachw. von Viruspartikeln)</td>
<td>Stuhl</td>
<td>für Routine nicht geeignet</td>
<td></td>
</tr>
<tr>
<td>Nachweis viraler Antigene</td>
<td>Stuhl</td>
<td>nicht verfügbar</td>
<td></td>
</tr>
<tr>
<td>RT-PCR</td>
<td>Stuhl, Blut</td>
<td>pos/neg</td>
<td>gelingt in ca. 90% aller Fälle</td>
</tr>
</tbody>
</table>

Nachweis spezifischer Antikörper

<table>
<thead>
<tr>
<th>Methode</th>
<th>Probenmaterial/Transport</th>
<th>Ergebnis/Einheit</th>
<th>Anmerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT</td>
<td>nicht verfügbar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELISA: Nachweis von IgG und/oder IgM</td>
<td>Serum</td>
<td>pos/neg</td>
<td>nur eukaryontisch exprimiertes ORF2-Protein als Ag geeignet</td>
</tr>
<tr>
<td>WB: IgG oder IgM</td>
<td>Serum</td>
<td>pos/neg</td>
<td></td>
</tr>
</tbody>
</table>

7.15.4 Untersuchungsindikationen und Materialien
Bei akuter Hepatitis bei Patienten, die aus Endemiegebieten eingereist sind, nach negativem Ausfall von Tests auf Anti-HEV-IgM, Anti-HBC-IgM und Anti-HCV. Serum zur Bestimmung von Anti-HEV-IgG und -IgM, eventuell auch Bestimmung von HEV-RNA (RT-PCR); Stuhl zur Bestimmung von HEV-RNA (RT-PCR).

7.15.5 Virologische Interpretationen und klinische Bedeutung
7.15.6 Besondere diagnostische Probleme

Falsch positive Ergebnisse mit kommerziellen Tests auf Anti-HEV sind häufig, vor allem bei niedrigen Extinktionswerten. Wenn kein Titeranstieg im Zweitserum feststellbar und die PCR (im Stuhl) negativ ist, bleibt die Diagnose fraglich. Andererseits kommen auch falsch negative Ergebnisse im ELISA vor.

7.15.7 Meldepflicht

Namentliche Meldepflicht an das Gesundheitsamt besteht nach §6 IfSG für die akute Erkrankung (wie für jede andere akute Virushepatitis nach §7 IfSG für den direkten oder indirekten Erregernachweis, sofern er auf eine akute Infektion hinweist. Zur Meldung verpflichtet ist im ersten Fall der feststellende Arzt, im zweiten Fall der Leiter des Labors das den Nachweis geführt hat.

7.16 Herpes-Simplex-Virus (HSV) (Familie: Herpesviridae - Alphaherpesvirinae)

7.16.1 Erreger und Infektion

7.16.1.1 Virus

Umhüllte wenig umweltresistente große DNA-Viren (150-200 nm). Das Nukleokapsid besteht aus 162 Kapsomeren (ca. 100 nm). Das doppelsträngige DNA-Genom (ca. 150 kb) kodiert für mehr als 70 Proteine. Die Replikation der Herpesviren ist ein komplexer kaskadenartig regulierter Prozess, bei dem sequentiell α-, β-, und γ-Gene des Virus exprimiert werden und der im Wesentlichen im Zellkern abläuft. Es existieren 2 Typen: HSV-1 (humanes Herpesvirus 1, HHV-1) und HSV-2 (humanes Herpesvirus 2, HHV-2). Die DNA-Sequenzhomologie zwischen den beiden Typen beträgt ca. 85%. Typenspezifische Epitope finden sich auf dem Oberflächen-Glykoprotein gG.
7.16.1.2 Epidemiologie

7.16.1.3 Infektionsformen

HSV ist bei produktiver Infektion zytopathogen und wird nach der Primärinfektion in Ganglienzenellen latent. Reaktivierungen treten etwa in 50% aller latent Infizierten auf, die Häufigkeit und vor allem der Schweregrad sind aber bei Immundefizienten deutlich größer. Heterologe und homologe Zweitinfektionen an anderer Stelle sind möglich; sie verlaufen in der Regel klinisch milder als die Primärinfektion. Die HSV-Enzephalitis stellt eine zentripetale Infektion des ZNS dar und tritt überwiegend (ca. 70%) bei einer Reaktivierung auf, nur zum kleineren Teil (vor allem bei Kindern) im Rahmen der Primärinfektion. Schwerste septische Infektionen können bei Neugeborenen seronegativer Mütter auftreten. Vor allem bei HIV-Infizierten (<200 CD4-positive Zellen/µl) kann eine lokal-persistierende produktive Infektion an Haut und Schleimhaut auftreten.

7.16.1.4 Inkubationszeit

Die Inkubationszeit beträgt 2-12 Tage.

7.16.2 Symptome/Erkrankungen

Die Primärinfektion kann sich oral als Gingivostomatitis (überwiegend HSV-1) oder genital als primärer Herpes genitalis (vorwiegend HSV-2) manifestieren, die Reaktivierung meist als Herpes labialis oder Herpes genitalis. Relativ häufig ist auch die herpetische Kerato-konjunktivitis. Als Komplikation eines primären Herpes genitalis (HSV-2) findet sich bei 5-10% der meist weiblichen Patienten eine aseptische Meningitis. Selten ist dagegen die schwere Form der sporadischen hämorrhagischen Herpes-simplex-Enzephalitis (USA: ca. 1:200000/Jahr), die

7.16.3 Diagnostische Methoden

Nachweis von Viren oder Virusbestandteilen (Antigen/Nukleinsäure)

<table>
<thead>
<tr>
<th>Methode</th>
<th>Probenmaterial/Transport</th>
<th>Ergebnis/Einheit</th>
<th>Anmerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virusisolierung</td>
<td>Bläscheninhalt, Abstrich, biotisches und autolysisches Gewebe</td>
<td>pos/neg</td>
<td>Testdauer: 24 h, ggf. kombiniert mit IFT mit mAk, gleichzeitig Typisierung</td>
</tr>
<tr>
<td></td>
<td>Transport: in kleinem Volumen VTM, gekühlt, nicht gefroren</td>
<td>Typisierung</td>
<td>Sens u. Spez: höchst</td>
</tr>
<tr>
<td>Resistenztestung</td>
<td>Virusisolat</td>
<td>quantitativ HD50 (µM) empfindlich/resistent</td>
<td>relativ aufwändig, bei Therapieversagen indiziert</td>
</tr>
<tr>
<td>EM (Nachweis von</td>
<td>Bläscheninhalt</td>
<td>pos/neg</td>
<td>schnell und zuverlässig, keine Unterscheidung von anderen Herpesviren möglich</td>
</tr>
<tr>
<td>Viruspartikeln,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Einschlusskörpern)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Histologie/Zytologie</td>
<td>Tropfpräparat, Paraffinschnitt</td>
<td>pos/neg</td>
<td>nicht HSV-spezifisch, positive Befunde mit anderen Methoden abtrennen</td>
</tr>
<tr>
<td>IFT (Nachweis viraler Antigene)</td>
<td>zellreicher Abstrich</td>
<td>Testdauer: 4 h</td>
<td>Sens u. Spez: höchst</td>
</tr>
<tr>
<td>PCR</td>
<td>Liquor, Kammerwasser, Glaskörperpunktat, Gewebe</td>
<td>pos/neg</td>
<td>Testdauer: 24 h, Sens u. Spez: höchst; Relevanz bei anderen Materialien fraglich</td>
</tr>
</tbody>
</table>

Nachweis spezifischer Antikörper

<table>
<thead>
<tr>
<th>Methode</th>
<th>Probenmaterial/Transport</th>
<th>Ergebnis/Einheit</th>
<th>Anmerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT</td>
<td>Serum</td>
<td>Titer</td>
<td>in der Fraxis nicht relevant</td>
</tr>
<tr>
<td>ELISA, IFT, Ig-Klassen-</td>
<td>Serum, Liquor</td>
<td>pos/neg</td>
<td>nur bei Primärinfection und Enzephalitis diagnostisch relevant</td>
</tr>
<tr>
<td>differenzierung</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immunoblot (WB), ELISA</td>
<td>Serum</td>
<td></td>
<td>HSV-1/2-typenspezifische Antikörper</td>
</tr>
<tr>
<td>HSV-1/2 IgG2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KBR</td>
<td>Serum</td>
<td>Titer</td>
<td>diagnostische Aussagekraft gering</td>
</tr>
</tbody>
</table>

7.16.4 Untersuchungsindikationen und Materialien

HSV-Infektion werden oft klinisch diagnostiziert. Laboruntersuchungen sind jedoch bei einer Reihe von unterschiedlichen Fragestellungen zur Abklärung erforderlich.

Atypische Hauterscheinungen:

Abstriche für Antigennachweis (2-3 h und/oder Virusisolierung (24-48 h) Bläscheninhalt für Virusisolierung. Bei schon weitgehend eingetrockneten Läsionen PCR.
Verdacht auf Herpes-simplex-Enzephalitis oder andere ZNS-Komplikation:
Liquor für PCR (frühe Stadien), Serum-Liquor-Paar zum Nachweis intrathekaler oligoklonaler Antikörper (Antikörperquotient aus Liquor und Serum) ab 7. Krankheitstag.

Schwangere mit v. a. Herpes genitalis:
Zervixabstrich für Virusisolierung und ggf. Antigennachweis.

Neugeborene:
Augenabstrich, Rachenabstrich, Urin für Virusisolierung; bei neurologischen Manifestationen zusätzlich Liquor für PCR.

Immunsupprimierte:
Rachenabstrich/Gurgelwasser für Virusisolierung, je nach vermutetem Organbefall Liquor, BAL, Biopsiematerial für PCR.

Resistenztestung:
Indiziert bei klinischem Verdacht auf Therapieversagen nach Langzeittherapie (meist Immun-supprimierte). Voraussetzung für die phänotypische Testung ist die Verfügbarkeit eines Virusisolates.

7.16.5 Virologische Interpretationen und klinische Bedeutung
Eine Serokonversion im IgG-ELISA beweist eine Primärinfektion, es sei denn, es wurden Immunglobuline verabreicht (häufig bei Immunsupprimierten).

7.16.6 Besondere diagnostische Probleme
- Wenn Liquor oder andere Materialien für die PCR entnommen werden, ist besonders auf aseptische Kautelen, nicht nur bei der Entnahme, sondern auch beim Überführen in die Probengefäße zu achten, da
7.16.7 Meldepflicht

keine

7.17 Humanes Herpesvirus 6 (HHV-6) (Familie: Herpesviridae - Betaherpesvirinae)

7.17.1 Erreger und Infektion

7.17.1.1 Virus

Umhülltes und daher in der Umwelt relativ labiles DNA-Virus der Beta-Herpesvirusgruppe (Roseolovirus). Komplette Viruspartikel sind 160-200 nm groß, die aus 162 Kapsomeren bestehenden Kapside ca. 100 nm. Das Genom besteht aus einer doppelsträngigen DNA von ca. 167 kb. DNA-Replikation und Bildung der Kapside finden im Zellkern statt, die Umhüllung beim Durchtritt durch die Kernmembran. Es werden zwei Varianten (A und B) unterschieden, die sich in ihrer Nukleinsäuresequenz, aber auch im Hinblick auf in-vitro-Zelltropismus, Epidemiologie und Krankheitsassoziationen unterscheiden. HHV-6 A und B weisen ca. 8-10% Divergenz in der Nukleinsäuresequenz auf, unterschiedliche Isolate einer Variante dagegen deutlich unter 5%. Zu HHV-7 beträgt die Sequenzdivergenz auf Nukleinsäureebene mehr als 50%.

7.17.1.2 Epidemiologie

HHV-6 ist ein ubiquitäres Virus; die Primärinfektion erfolgt sehr früh (Seroäquivalenz bei Dreijährigen bis zu 95%). Die wichtigste Rolle für die Transmission kommt sicherlich dem Speichel zu; Berichte über den Nachweis von HHV-6 in Zervixsekret lassen aber auch sexuelle und perinatale Infektion möglich erscheinen.

7.17.1.3 Infektionsformen

7.17.1.4 Inkubationszeit
Die Inkubationszeit beträgt 5-15 Tage.

7.17.2 Symptome/Erkrankungen

7.17.3 Diagnostische Methoden
Nachweis von Viren oder Virusbestandteilen (Antigen/Nukleinsäure)

<table>
<thead>
<tr>
<th>Methode</th>
<th>Probenmaterial/Transport</th>
<th>Ergebnis/Einheit</th>
<th>Anmerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virusisolierung</td>
<td>Blutlymphozyten, Liquor</td>
<td>pos/neg</td>
<td>Testdauer: 7-14 Tage nicht standardisiert</td>
</tr>
<tr>
<td>EM (Nachweis von Viruspartikeln, Einschlusskörpern)</td>
<td>Gewebeschnitte</td>
<td>ohne diagnostische Bedeutung</td>
<td></td>
</tr>
<tr>
<td>Nachweis viraler Antigene</td>
<td></td>
<td>nicht etabliert</td>
<td></td>
</tr>
<tr>
<td>IFT: indir. (nAk)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCR</td>
<td>Blutlymphozyten, Liquor, Leber, Lymphknoten, Serum/Plasma</td>
<td>pos/neg semiquant.</td>
<td>keine standardisierte Quantifizierung der „nested“-PCR</td>
</tr>
</tbody>
</table>

Nachweis spezifischer Antikörper

<table>
<thead>
<tr>
<th>Methode</th>
<th>Probenmaterial/Transport</th>
<th>Ergebnis/Einheit</th>
<th>Anmerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT</td>
<td>Serum, Liquor</td>
<td>Titer (IFT) ELISA meist quantitativ</td>
<td>IgM oft auch bei Primärinfektion nicht od. nur schlecht nachweisbar, Kreuzreaktivität mit HHV-7</td>
</tr>
<tr>
<td>IFT, ELISA Ig-Klassen-Differenzierung</td>
<td>Serum, Liquor</td>
<td>Titer (IFT) ELISA meist quantitativ</td>
<td>IgM oft auch bei Primärinfektion nicht od. nur schlecht nachweisbar, Kreuzreaktivität mit HHV-7</td>
</tr>
</tbody>
</table>

7.17.4 Untersuchungsindikationen und Materialien
HHV-6-Infektionen bedürfen wegen des in aller Regel blenden Verlaufs selten virologischer Diagnostik. Mögliche Untersuchungsindikationen können sein:
Verdacht auf HHV-6-assozierte Erkrankung (Enzephalitis, Hepatitis, Pneumonie, Lymphadenopathien) bei Immunsupprimierten (Transplantationspatienten, HIV-Infizierter, angeborene Immundefekte): HHV-6-PCR aus Liquor, Biopsaten, BAL je nach Symptomatik. Bei den meisten der aufgelisteten Indikationen rangiert HHV-6 allerdings von der Wahrscheinlichkeit her deutlich hinter anderen möglichen Erregern, insbesondere CMV- und EBV-Doppelinfectionen sind häufig.

7.17.5 Virologische Interpretationen und klinische Bedeutung

- *Positiver IgG/IgM/ELISA mit Titeranstieg*: frische HHV-6-Infektion oder Reaktivierung; Bestätigung durch PCR aus Serum/Plasma (nicht PBL) oder Liquor.
- *Positive HHV-6-PCR*: in PBL und lymphatischem Gewebe geringe Aussagekraft, da auch bei gesunden Seropositiven gelegentlich positiv, auch bei HHV-6-DNA im Liquor.

Bei bestehender ZNS-Symptomatik spricht für eine kausale Rolle des Virus.

7.17.6 Besondere diagnostische Probleme

Serologische Kreuzreaktivität mit HHV-7.
IgM-Nachweis nicht zuverlässig, auch bei Primärinfektion.
Wertigkeit positiver PCR-Befunde für viele Untersuchungsmaterialien unklar.

7.17.7 Meldepflicht

keine

7.18 Humanes Herpesvirus 7 (HHV-7) (Familie: Herpesviridae – Betaherpesvirinae)

7.18.1 Erreger und Infektion

7.18.1.1 Virus

7.18.1.2 Epidemiologie

Ebenso wie HHV-6 ist auch HHV-7 sehr weit verbreitet. Der mittlere Infektionszeitpunkt liegt jedoch nach seroepidemiologischen Studien etwa um ein Jahr später als bei HHV-6, sodass eine Durchseuchungsrate von 90% im Alter von 3-4 Jahren erreicht wird. Als mögliche Infektionsquelle ist bisher nur Speichel identifiziert.

7.18.1.3 Infektionsformen

HHV-7 ist zytopathogen in T-Lymphozyten. Die Primärinfektion ist meist asymptomatisch. Das Virus persistiert lebenslang vor allem in der Speicheldrüse und ist hier bei über 50% der gesunden Erwachsenen in deutlich größerer Menge als HHV-6 nachweisbar. Reaktivierung des Virus erfolgt bei Immunsuppression, doch scheint dies klinisch ohne Belang zu sein.

7.18.1.4 Inkubationszeit

Die Inkubationszeit ist unbekannt.

7.18.2 Symptome/Erkrankungen:

Wie bei HHV-6 ist das Exanthera subitum (Roseola infantum, kritisches Dreitagefieber) mit Fieber und flüchtigem Exanthem die typische Erkrankung bei Primärinfektion. Über die bei Exanthera subitum häufigen Fieberkrämpfe hinaus sind keine Komplikationen der HHV-7-Infektion bekannt; ebenso wenig Embryo- oder Fetopathien.

7.18.3 Diagnostische Methoden

Nachweis von Viren oder Virusbestandteilen (Antigen/Nukleinsäure)

<table>
<thead>
<tr>
<th>Methode</th>
<th>Probenmaterial/Transport</th>
<th>Ergebnis/Einheit</th>
<th>Anmerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virusisolierung</td>
<td>Blutlymphozyten, Liquor</td>
<td>pos/neg</td>
<td>Testdauer: 7-14 Tage nicht standardisiert</td>
</tr>
<tr>
<td>EM: Nachweis v. Viruspartikel</td>
<td>Gewebeschichte</td>
<td></td>
<td>ohne diagnostische Bedeutung</td>
</tr>
<tr>
<td>Nachweis viraler Antigene</td>
<td></td>
<td></td>
<td>nicht etabliert</td>
</tr>
<tr>
<td>PCR</td>
<td>Blutlymphozyten, Liquor, ggf. Serum</td>
<td>pos/neg semiquant.</td>
<td>keine Standardisierung</td>
</tr>
</tbody>
</table>

Nachweis spezifischer Antikörper

<table>
<thead>
<tr>
<th>Methode</th>
<th>Probenmaterial/Transport</th>
<th>Ergebnis/Einheit</th>
<th>Anmerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT</td>
<td></td>
<td></td>
<td>nicht etabliert</td>
</tr>
</tbody>
</table>

Bearbeiter*in: Dr. Gertner-Göbel, Eva
Freigabe*in: Prof. Dr. Stamminger, Thomas
ID: 22222
Revision: 09/12.09.2022
Seite: 87 von 173
7.18.4 Untersuchungsinformationen und Materialien

Das Exanthema subitum bedarf in aller Regel keiner virologischen Diagnostik. Im Gegensatz zu HHV-6 gibt es bisher auch keine Hinweise auf klinisch relevante Komplikationen der HHV-7-Infektion.

7.18.5 Virologische Interpretationen und klinische Bedeutung

- **Positiver IgG-IFT oder -ELISA, kein Titeranstieg**: zurückliegende HHV-7-Infektion
- **Positiver IgG-IFT/ELISA mit Titeranstieg**: frische HHV-7-Infektion oder Reaktivierung: die Differenzierung der frischen Infektion von der Reaktivierung ist vermutlich durch parallele Untersuchung von PBL und Speichel auf Virus möglich; bei frischer Infektion ist das Virus interessanterweise zwar im Blut, jedoch (noch) nicht im Speichel nachweisbar. Dieses Verfahren ist noch nicht validiert.

7.18.6 Besondere diagnostische Probleme

- Serologische Kreuzreaktivität mit HHV-6
- IgM-Nachweis auch bei Primärinfektion nicht zuverlässig
- Virusisolierung aus Speichel ist ein Normalbefund
- Infektion von peripheren Blutlymphozyten seropositiver Spender mit HHV-7 führt regelmäßig zur Reaktivierung des latent vorhandenen HHV-6.

7.18.7 Meldepflicht

keine

7.19 Humanes Herpesvirus 8 (HHV-8) / Kaposi-Sarkom-assoziiertes-Herpesvirus (KSHV) (Familie: Herpesviridae – Gammaherpesvirinae)

7.19.1 Erreger und Infektion

7.19.1.1 Virus

Umhülltes und daher in der Umwelt relativ labiles DNA-Virus der Gamma-Herpesvirusgruppe (Genus Rhadinovirus). Die Größe des Genoms beträgt ca. 160 kb; Arbeiten zur Morphologie zeigen typische Herpesviruspartikel von ca. 160-200 nm Größe.
7.19.1.2 Epidemiologie

7.19.1.3 Infektionsformen

7.19.1.4 Inkubationszeit
Einzelne Kasuistiken beschreiben ein Intervall von wenigen Wochen bis wenigen Monaten zwischen der Übertragung von HHV-8 durch ein Transplantat und Auftreten von klinischen Erscheinungen (Multi-centric Castleman’s Disease, Knochenmarkversagen) oder messbarer Virämie. In großen prospektiven Kohortenstudien HIV-infizierter homosexueller Männer entwickeln 50% der neu mit HHV-8 Infizierten ein Kaposi-Sarkom innerhalb von 5-10 Jahren.

7.19.2 Symptome/Erkrankungen

7.19.3 Diagnostische Methoden
Nachweis von Viren oder Virusbestandteilen (Antigen/Nukleinsäure)

<table>
<thead>
<tr>
<th>Methode</th>
<th>Probenmaterial/Transport</th>
<th>Ergebnis/Einheit</th>
<th>Anmerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virusspezifische Antisera</td>
<td>Probenmaterial/Transport</td>
<td>Ergebnis/Einheit</td>
<td>Anmerkungen</td>
</tr>
<tr>
<td>Probenmaterial/Transport</td>
<td>Ergebnis/Einheit</td>
<td>Anmerkungen</td>
<td></td>
</tr>
</tbody>
</table>

Bearbeiter*in: Dr. Gentner-Göbel, Eva
Freigeber*in: Prof. Dr. Stamminger, Thomas
ID: 22222
Revision: 09/12/09, 2022
Seite: 89 von 173
7.19.4 Untersuchungsindikationen und Materialien

- Verdacht auf Kaposi-Sarkom: Biopsiematerial für PCR/Southern Blot
- HIV-Patienten (Homosexuelle) ohne Kaposi-Sarkom: Nachweis von HHV-8-DNA in peripheren Blutleukozyten (PBL), als möglicher prädiktiver Parameter für die Entwicklung eines Kaposi-Sarkoms
- HHV-8-Antikörper: Im Allgemeinen nur epidemiologische Fragestellungen. In speziellen klinischen Situationen, wobei ein Antikörperspezifisch nachweis in mehreren Tests, welche verschiedene Antigene verwenden, gelingen sollte.
- Serokonversion oder Titeranstieg bei Immunsuppressionen als möglicher prädiktiver Parameter für die Entwicklung eines Kaposi-Sarkoms.

7.19.5 Virologische Interpretationen und klinische Bedeutung

- HHV-8-positive DNA-PCR/Southern Blot aus verdächtiger Hautläsion: Die Diagnose Kaposi-Sarkom kann als gesichert gelten.
- HHV-8-negative DNA-PCR aus verdächtiger Hautläsion: Es kann nahezu ausgeschlossen werden, dass es sich bei der biopsierten Läsion um ein Kaposi-Sarkom handelt.
- HHV-8-DNA in PBL bei HIV-Patienten: hohes Risiko (ca. 50%) für das Auftreten eines Kaposi-Sarkoms in den nächsten 3 Jahren bei vorhandener Immunsuppression ohne antiretrovirale Therapie.

7.19.6 Besondere diagnostische Probleme

7.19.7 Meldepflicht

keine
7.20 Humanes Immunschwächevirus, Typ 1 und 2 (HIV-1/-2) (Familie: Retroviridae - Lentivirus)

7.20.1 Erreger und Infektion

7.20.1.1 Virus

Gene und Genprodukte (Proteine/Antigene) von HIV
Strukturproteine und enzymatisch aktive Proteine

<table>
<thead>
<tr>
<th>Gen</th>
<th>Vorläuferprotein HIV-1</th>
<th>Protein</th>
<th>Größe HIV-1</th>
<th>Größe HIV-2</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>gag</td>
<td>pr55</td>
<td>Matrix</td>
<td>p17</td>
<td>p16</td>
<td>Strukturproteine</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kapsid</td>
<td>p24</td>
<td>p26</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nukleokapsid</td>
<td>p7</td>
<td>p6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>pr55</td>
<td>p6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gag-pol</td>
<td>pr160</td>
<td>Fusionsvorläuferprotein bei HIV-1</td>
<td>p10</td>
<td>p12</td>
<td>virale Enzyme</td>
</tr>
<tr>
<td></td>
<td></td>
<td>protease</td>
<td>p66/51</td>
<td>p68/55</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>reverse Transkriptase</td>
<td>p22</td>
<td>p24</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Integrase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>env</td>
<td>gp160</td>
<td>Oberflächen-Glykoprotein</td>
<td>gp120</td>
<td>gp105</td>
<td>Strukturproteine der Hülle</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Transmembran-Glykoprotein</td>
<td>gp41</td>
<td>gp26</td>
<td></td>
</tr>
</tbody>
</table>

Regulatorische Proteine

<table>
<thead>
<tr>
<th>Gen</th>
<th>Vorläuferprotein HIV-1</th>
<th>Protein</th>
<th>Größe HIV-1</th>
<th>Größe HIV-2</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>vif</td>
<td>Vif</td>
<td>p24</td>
<td>p23</td>
<td></td>
<td>Infektionsverstärkung</td>
</tr>
<tr>
<td>vpu</td>
<td>Vpu (nur HIV-1)</td>
<td>p16</td>
<td></td>
<td></td>
<td>Freisetzung von Viruspunkeln, Degradation von CD4</td>
</tr>
<tr>
<td>vpx</td>
<td>Vpx (nur HIV-2)</td>
<td>p14</td>
<td></td>
<td></td>
<td>Vermehrung in mononukleären Zellen</td>
</tr>
<tr>
<td>vpr</td>
<td>Vpr</td>
<td>p15</td>
<td>p12</td>
<td></td>
<td>Blockierung des Zellzyklus in G2</td>
</tr>
<tr>
<td>tat</td>
<td>Tat</td>
<td>p14</td>
<td>p14</td>
<td></td>
<td>Transaktivierung der Transkription</td>
</tr>
<tr>
<td>rev</td>
<td>Rev</td>
<td>p19/20</td>
<td>p20</td>
<td></td>
<td>Transport ungespleißter mRNA</td>
</tr>
</tbody>
</table>

Bearbeiter*in: Dr. Gentner-Göbel, Eva
Freigabe*r: Prof. Dr. Stammlinger, Thomas
ID: 22222
Revision: 09/12/2022
Seite: 91 von 173
Als Hauptrezeptor fungiert das CD4-Molekül, als Korezeptoren wurden verschiedene Chemokinrezeptoren (insbesondere CXCR-4 und CCR-5) identifiziert. HIV wird in die Typen HIV-1 und HIV-2 unterteilt, wobei für HIV-1-Isolate die Subgruppen M (major), O (outlier) und N (new variant; nur wenige Isolate) unterschieden werden. Innerhalb der Subgruppe M werden die Subtypen A-K unterschieden, außerdem treten zahlreiche Intersubtyp-Rekombinannten auf, die als „circulating recombinant forms“ (CRF) bezeichnet werden und regional sehr hohe Prävalenzen aufweisen. Auch für HIV-2 besteht eine Einteilung in 7 Subgruppen (A-G). HI-Viren weisen innerhalb der einzelnen Subtypen eine sehr hohe genetische Variabilität auf und in jedem infizierten Individuum entwickelt sich eine HIV-Quasi-Spezies, die aus einer Vielzahl von Virusvarianten besteht.

7.20.1.2 Epidemiologie

7.20.1.3 Infektionsformen

7.20.1.4 Inkubationszeit

Bis zum Auftreten einer Primärmanifestation dauert es ca. 2-8 Wochen; bis zum Auftreten von AIDS einige Monate (normalerweise nicht unter 2 Jahre) bis zu 10 Jahre und mehr.

7.20.2 Symptome/Erkrankungen

7.20.3 Diagnostische Methoden

Nachweis von Viren oder Virusbestandteilen (Antigen/Nukleinsäure)

<table>
<thead>
<tr>
<th>Methode</th>
<th>Probenmaterial/Transport</th>
<th>Ergebnis/Einheit</th>
<th>Anmerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virusisolierung</td>
<td>Plasma, Lymphozyten (PBL), Liquor</td>
<td>pos/neg</td>
<td>schlecht standardisierbar</td>
</tr>
<tr>
<td>EM (Nachweis von Viruspartikeln)</td>
<td></td>
<td></td>
<td>keine diagnostische Bedeutung</td>
</tr>
<tr>
<td>Nachweis viraler Enzyme reverse-Transkriptase-</td>
<td>Plasma, Liquor; Evtl. vorherige Anreicherung</td>
<td>neg/pos</td>
<td>nicht standardisiert, keine diagnostische Routinemethode, falsch negative und falsch positive Befunde kommen vor (andere Retrosiren)</td>
</tr>
<tr>
<td>Aktivität</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nachweis viraler Antigene p24-Ag-EIA</td>
<td>Serum/Plasma</td>
<td>Pg/ml</td>
<td>einfach, intensiv, durch quantitativen RNA-Nachweis weitgehend abgelöst</td>
</tr>
<tr>
<td>PCR Nachweis proviraler DNA</td>
<td>mononukl. Zellen, Gewebe</td>
<td>pos/neg</td>
<td>schlechte Standardisierung, unsicher bei manchen HIV-Varianten</td>
</tr>
<tr>
<td>Nachweis von Virus-RNA mit PCR</td>
<td>EDTA-/Zitrat Plasma, Liquor</td>
<td>Anzahl Genomkopien pro ml Plasma (Therapiekontrolle)</td>
<td>Vergleichbarkeit bei demselben Test und Labor, dann prädikativ</td>
</tr>
<tr>
<td>Resistenzzentestung, phänotypisch</td>
<td>Plasma, Lymphozyten</td>
<td>quantitativ, phänotypisch</td>
<td>zu langwierig für die klinische Anwendung</td>
</tr>
<tr>
<td>Resistenzzentestung genotypisch</td>
<td>Plasma</td>
<td>Sequenz</td>
<td>Testdauer: 2-6 Tage, Beurteilung nur mit Interpretationssystem (IS). Verschiedene IS können divergieren.</td>
</tr>
</tbody>
</table>

Bearbeiter*in: Dr. Gentner-Göbel, Eva
Freigabes*in: Prof. Dr. Stamminger, Thomas
ID: 22223
Revision: 09/12/2022
Seite: 82 von 173
Nachweis spezifischer Antikörper

<table>
<thead>
<tr>
<th>Methode</th>
<th>Probenmaterial/Transport</th>
<th>Ergebnis/Einheit</th>
<th>Anmerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutralisation</td>
<td>Plasma/Serum</td>
<td>Titer</td>
<td>ohne routinediagnostische Bedeutung</td>
</tr>
<tr>
<td>ELISA, Kombinationstest HIV-1/HIV-2, Ag/Ak-Kombitests</td>
<td>Serum, Plasma (Liquor)</td>
<td>reaktiv/nicht reaktiv</td>
<td>einfach, schnell, kostengünstig, Suchtest, Ag/Ak-Kombitests reduzieren das diagnostische Fenster</td>
</tr>
<tr>
<td>Immunoblot (WB)</td>
<td>Serum, Plasma (Liquor)</td>
<td>pos/neg (HIV-spezifische Banden)</td>
<td>Bestätigungs-Test, Differenzierung HIV-1/HIV-2-Infektion, Spezial-Verfahren, das Erfahrung benötigt</td>
</tr>
<tr>
<td>IFT</td>
<td>Serum, Plasma (Liquor)</td>
<td>pos/neg ggf. Titer</td>
<td>bei Erfahrung gute Methode, Kreuzreaktion bei HIV-Varianten ist hoch, ohne routinediagnostische Bedeutung</td>
</tr>
<tr>
<td>Partikelagglutinationtests</td>
<td>nur Serum</td>
<td>pos/neg</td>
<td>Alternative zum ELISA als Suchtest, schlechtere Spezifität</td>
</tr>
</tbody>
</table>

7.20.4 Untersuchungsmethoden und Materialien

Feststellung des Infektionsstatus (z. B. Blutspendertestung):

Verdacht auf frische Infektion/kürzliche Exposition:
Antikörpertests wie oben, zusätzlich p24-Antigen-EIA im Serum; falls beide Tests negative oder fragliche bzw. diskrepante Befunde ergeben, zusätzlich Bestimmung der Viruslast (s. u.) bzw. PCR zum Nachweis proviraler DNA aus Lymphozyten; Verlaufskontrolle von Antikörpern und p24-Antigen nach ca. 2 Wochen. Weitere Verlaufskontrollen (Antikörpertests) zusätzlich bei definierter Exposition (z. B. beruflich) nach 6 Wochen sowie 3 und 6 Monaten nach Exposition.

Abklärung unklarer Antikörperbefunde:

Prognose, Indikationsstellung für antiretrovirale Therapie und Therapiekontrolle bei Patienten mit bekannter HIV-1-Infektion:
Notfalldiagnostik:
Wenn ein Schnelltest erforderlich ist, reicht die HIV-Antikörper-Diagnostik, besser ein Antigen-Antikörper-Kombinationstest. Der exponierte HIV-Negative kann erst nach 3-6 Monaten sicher über seinen Status informiert werden (postexpositionelle Prophylaxe s. u.).

Postexpositionelle Prophylaxe:
Bei akzidenteller Exposition im medizinischen Bereich (z. B. Nadelstichverletzung) sollte eine Chemoprophylaxe (Kombination mehrerer antiretroviral wirksamer Substanzen) durchgeführt werden. Detaillierte Richtlinien hierzu wurden vom Robert-Koch-Institut (Bundesinstitut für Infektionskrankheiten und nicht übertragbare Erkrankungen) veröffentlicht.

7.20.5 Virologische Interpretationen und klinische Bedeutung
7.20.6 Besondere diagnostische Probleme

7.20.7 Meldepflicht
Nichtnamentliche Meldepflicht des direkten oder indirekten Nachweises einer HIV-Infektion nach IfSG §6 und §7 Abs. 3 binnen zwei Wochen auf einem speziellen Formblatt an das Robert-Koch-Institut durch Labor und Arzt.

7.21 Humanes Metapneumovirus (HMPV) (Ordnung: Mononegavirales, Familie: Pneumoviridae, Genus: Metapneumovirus)

7.21.1 Erreger und Infektion

7.21.1.1 Virus
Ein weiteres respiratorisches Virus der Unterfamilie Pneumovirinae wurde 2001 in RSV-negativen Archivproben von Kindern mit Atemwegserkrankungen ungeklärter Ätiologie entdeckt. Mit ca. 40% Homologie auf Proteinebene zu RSV und ca. 70% zu dem aviären Metapneumovirus sowie auf Grund entsprechender Genomarchitektur wurde es dem Genus Metapneumovirus zugeordnet und trägt den Speziesnamen Humanes Metapneumovirus.
Das Virus vermehrt sich im Zytoplasma der infizierten Zellen. Es werden zwei genetische Gruppen (A und B) mit je zwei Subgenotypen (A1, A2, B1 und B2) unterschieden.
7.21.2 Epidemiologie

Das Virus wird durch Tröpfchen-, Aerosol- und Schmierinfektion (kontamierte Gegenstände) übertragen. Die Durchseuchung erfolgt ohne größere geographische Unterschiede bis zum 1. Lebensjahr zu etwa 25% (Erstinfektion tritt später auf als bei RSV) und erreicht mit dem 5.-10. Lebensjahr 100%.

7.21.3 Infektionsformen

7.21.4 Inkubationszeit

Die Inkubationszeit beträgt einige Tage.

7.21.2 Symptome/Erkrankungen

<table>
<thead>
<tr>
<th>Kleinkinder/Kinder (bis 5 Jahre)</th>
<th>Junge Erwachsene/gesunde ältere Erwachsene</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Fieber (45-100%), häufiger als bei RSV</td>
<td>• influenzaähnliche Erkrankung</td>
</tr>
<tr>
<td>• Rhinitis (40-90%)</td>
<td></td>
</tr>
<tr>
<td>• Laryngitis, Pharyngitis, Konjunktivitis, Otitis media (mit variabler Frequenz)</td>
<td></td>
</tr>
<tr>
<td>• Tracheobronchitis, Krupp, Bronchitis, Pneumonien</td>
<td></td>
</tr>
<tr>
<td>• Exazerbation bei Asthma</td>
<td></td>
</tr>
<tr>
<td>• schwere Verläufe bei RSV-Koinfektion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7.21.3 Diagnostische Methoden

Nachweis von Viren oder Virusbestandteilen (Antigen/Nukleinsäure)

<table>
<thead>
<tr>
<th>Methode</th>
<th>Probenmaterial/Transport</th>
<th>Ergebnis/Einheit</th>
<th>Anmerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virusisolierung</td>
<td>Abstrich/Apirat: NA, RA, Transport: gekühlt, schnellstmöglich</td>
<td>pos/neg</td>
<td>Testdauer: KZK 24 h Isolierung bis 14 Tage, nach 6-7 Tagen Blindpassage, Originalmaterial -70°C Sens: hoch</td>
</tr>
<tr>
<td>EM (Nachweis von Viruspartikeln)</td>
<td>Abstrich/Apirat: NA, RA, BAL</td>
<td>pos/neg</td>
<td>Speziallabor: wird kaum eingesetzt</td>
</tr>
</tbody>
</table>

Bearbeiter*in: Dr. Gentner-Göbel, Eva
Freiguber*in: Prof.Dr. Stamminger, Thomas
ID: 22222
Revision: 09/12/09, 2022
Seite: 97 von 173
Nachweis spezifischer Antikörper

<table>
<thead>
<tr>
<th>Methode</th>
<th>Probenmaterial/Transport</th>
<th>Ergebnis/Einheit</th>
<th>Anmerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mikro-Neutralisation</td>
<td>Serum</td>
<td>Titer</td>
<td>Speziallabor: nicht kommerziell verfügbar</td>
</tr>
<tr>
<td>ELISA-IgG/IgM</td>
<td>Blut/Serum</td>
<td>Titeranstieg, Serokonversion</td>
<td>Speziallabor: nicht kommerziell verfügbar, meist für retrospektive Diagnose und epidemiologische Studien</td>
</tr>
</tbody>
</table>

Die Diagnose stützt sich im Wesentlichen auf den direkten Nachweis von viralen Komponenten (Antigen, RNA, (Viruspartikel)). Diagnostische Verfahren zum Nachweis von HMPV und spezifischen Antikörpern befinden sich bis auf die RT-PCR noch in Entwicklung.

7.21.4 Untersuchungssindikationen und Materialien

Zur ätiologischen Klärung schwerer Krankheitsverläufe wird für die Diagnose der akuten Infektion meist die quantitative RT-PCR eingesetzt (ist derzeit die Methode der Wahl). Der direkte Antigennachweis mittels monoklonaler Antikörper im IFT in Zellen von nasopharyngealen Sekreten kann in der Sensitivität der PCR nahekommnen.

Die Virusisolierung, wenn verfügbar, kann vor allem bei zellarmem Material hilfreich sein. Nasenrachensekret/Absaugmaterial eignet sich wesentlich besser als Abstrichmaterial. Für die PCR ist auch BAL geeignet.

Das Untersuchungsmaterial sollte frühzeitig abgenommen und möglichst schnell gekühlt (4°C) ins Labor transportiert werden. Es für einige Stunden bei 4°C haltbar. Für längere Aufbewahrung das Originalmaterial bei -70°C lagen.

7.21.5 Virologische Interpretationen und klinische Bedeutung

7.21.6 Besondere diagnostische Probleme

Koinfektionsraten mit RSV und anderen Viren (bis zu 5 Pathogene in einigen Patienten) variieren stark. Es ist unklar, ob methodische Unterschiede oder die Variabilität der zirkulierenden Viren dafür verantwortlich sind. Unsicher ist auch inneweierte Koinfektionen für einen schwereren Krankheitsverlauf bedeutsam sind.

Eine hochsensitive RT-PCR weist das Virus noch mehrere Wochen nach der akuten Infektion nach. Die Virusisolierung ist sehr anspruchsvoll (Speziallabor) und die Sensitivität der direkten Antigennachweise kann sehr variabel sein. Das Nasensekret/Absaugmaterial muss schnell transportiert und rasch verarbeitet werden.

Antikörperdiagnostik: praktischer Wert für akute Infektion ist begrenzt.

7.21.7 Meldepflicht

keine

7.22 Humanes T-lymphotropes Virus, Typ 1 und 2 (HTLV-1/-2) (Familie: Retroviridae; Deltaretrovirus)

7.22.1 Erreger und Infektion

7.22.1.1 Virus

7.22.1.2 Epidemiologie
HTLV-1 ist endemisch in Teilen Japans und Zentralafrikas, in der Karibik und im Nordosten Südamerikas. Weitere Endemieherde finden sich in Neuguinea und anderen Inseln Ozeaniens sowie in Taiwan und im Iran. Es gibt mehrere Subtypen (A–F), die in endemischen Clustern vorkommen, aber wenig Variabilität. Die Seroprävalenz kann dabei in eng begrenzten Regionen bis über 30% betragen. Weltweit liegt die Durchseuchung jedoch unter 0,1%, und in Deutschland dürfte sie weniger als 1/100 000 betragen. Die Übertragung erfolgt parenteral über Geschlechtsverkehr, Blut (Zellen), intrauterin (ca. 5%) und über die Muttermilch (bis 25%). Aus den USA sowie einigen europäischen Ländern (Italien, Spanien) wurde über hohe Durchseuchungsraten (bis zu 20%) bei i.v. Drogenabhängigen berichtet, wobei hier HTLV-2 vorzuherrschen scheint.

7.22.1.3 Infektionsformen
Ein der HTLV-Primärinfektion zuzuordnendes Krankheitsbild ist nicht bekannt. Das Virus persistiert lebenslang und führt bei der welt überwiegenden Zahl der Infizierten nie zu einer Erkrankung.

7.22.1.4 Inkubationszeit
Die Inkubationszeit beträgt Jahrzehnte (s. u.).

7.22.2 Symptome/Erkrankungen

7.22.3 Diagnostische Methoden
Nachweis von Viren oder Virusbestandteilen (Antigen/Nukleinsäure)

<table>
<thead>
<tr>
<th>Methode</th>
<th>Probenmaterial/Transport</th>
<th>Ergebnis/Einheit</th>
<th>Anmerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virusisolierung</td>
<td>EDTA-Blut, Isolierung von Lymphozyten, max. 24 h alt, bei RT</td>
<td>positive Anzucht (= transformierte T-Zellen)</td>
<td>langwierig, wird selten angewendet</td>
</tr>
<tr>
<td>EM (Nachweis von Viruspartikeln)</td>
<td></td>
<td></td>
<td>keine diagnostische Bedeutung</td>
</tr>
<tr>
<td>Nachweis viraler Enzyme reverse-Transkriptase-Aktivität</td>
<td></td>
<td></td>
<td>zur Bestätigung bei Anzüchtung (selten)</td>
</tr>
<tr>
<td>Nachweis viraler Antigene</td>
<td></td>
<td></td>
<td>kein kommerzieller Test</td>
</tr>
<tr>
<td>PCR (Nachweis proviraler DNA)</td>
<td>Vollblut, getrocknete Blutproben, Lymphozyten, Lymphknoten</td>
<td>pos/neg</td>
<td>einfachste Methode für Virusdirektnachweis</td>
</tr>
</tbody>
</table>

Bearbeiter*in: Dr. Gentner-Göbel, Eva
Freigabe*in: Prof. Dr. Stammlinger, Thomas
ID: 22223
Revision: 09/12/2022
Seite: 100 von 173

Ausgedruckt ist das Dokument eine unkontrollierte Kopie und unterliegt nicht dem Änderungsdienst.
Nachweis spezifischer Antikörper

<table>
<thead>
<tr>
<th>Methode</th>
<th>Probenmaterial/Transport</th>
<th>Ergebnis/Einheit</th>
<th>Anmerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutralisation</td>
<td></td>
<td>pos/neg</td>
<td>nicht etabliert</td>
</tr>
<tr>
<td>ELISA</td>
<td>Serum, Plasma, Liquor</td>
<td>pos/neg</td>
<td>einfach, schnell, Ak-Screening Spez: niedrig</td>
</tr>
<tr>
<td>IFT</td>
<td>Serum, Plasma, Liquor</td>
<td>pos/neg, ggf. Titer</td>
<td>schnell, wenig aufwändig,</td>
</tr>
<tr>
<td>Immunoblot (WB)</td>
<td>Serum, Plasma, Liquor</td>
<td>pos/neg</td>
<td>kommerzieller Test, Sens: geringer als ELISA, wegen Spez. und Differenz. – 1. Wahl</td>
</tr>
<tr>
<td>Partikelagglutinationstests</td>
<td>Serum, Liquor</td>
<td>pos/neg</td>
<td>Alternative zum ELISA als Suchtest</td>
</tr>
</tbody>
</table>

7.22.4 Untersuchungsindikationen und Materialien

Screening auf HTLV-Antikörper mit ELISA oder Partikelagglutinationstest:
Im positiven Fall Bestätigungsdiagnostik mit Immunoblot und ggf. Immunfluoreszenz, zusätzlich PCR auf provirale DNA.

Bei klinischer Symptomatik:

Infektionsrisiko/Expositionsrisiko:
Herkunft aus Endemiegebieten, Sexualkontakte mit Partnern aus Endemiegebieten oder Transfusionen, Partner/Kinder von Infizierten, oder invasive Therapie in Endemiegebieten, i. v. Drogenabusus.

7.22.5 Virologische Interpretationen und klinische Bedeutung

7.22.6 Besondere diagnostiche Probleme

In Ländern mit einer sehr niedrigen Prävalenz an HTLV-1/-2-Infektionen (z. B. Deutschland) lässt sich die Mehrzahl der im Antikörpersuchtest (ELISA) reaktiven Seren nicht bestätigen (falsch positiv, damit geringer positiver prädiktiver Wert). Im Westernblot findet sich dann häufig eine Reaktion mit einzelnen Proteinen, aber kein eindeutig positives Muster. HTLV-core-Proteine kreuzreagieren zum Teil mit Anti-p24 (HIV). Eine PCR-Untersuchung ist daher zur weiteren Abklärung bei positivem Suchtest neben dem Immunoblot zu empfehlen.

7.22.7 Meldepflicht

keine
7.23 Influenzavirus A, B, C (Familie: Orthomyxoviridae)

7.23.1 Erreger und Infektion

7.23.1.1 Virus

7.23.1.2 Epidemiologie

Die Epidemiologie der Influenzaviren wird durch ein Berichtssystem der WHO auf der Basis nationaler Influenzazentren fortlaufend überwacht. Gefürchtet ist das Auftreten neuer pandemischer Stämme nach
Antigenshift. Die WHO gibt jährlich eine Empfehlung für die Zusammensetzung der Influenzavirus-Impfstoffe heraus. Influenza-C-Virus-Infektionen kommen sporadisch vor.

7.23.1.3 Infektionsformen
Die Influenza ist eine akute, nicht persistierende, meist selbstlimitierende Infektion von einigen Tagen bis Wochen. Aufgrund der Variation der Influenzaviren sind wiederholte Erkrankungen im Lauf des Lebens häufig.

7.23.1.4 Inkubationszeit
Die Inkubationszeit beträgt 2–3 Tage.

7.23.2 Symptome/Erkrankungen

7.23.3 Diagnostische Methoden
Nachweis von Viren oder Virusbestandteilen

<table>
<thead>
<tr>
<th>Methode</th>
<th>Probenmaterial/Transport</th>
<th>Ergebnis/Einheit</th>
<th>Anmerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virusisolierung/-kurzkultur</td>
<td>Abstrich/Aspirat: (NA, RA), BAL, TS, Lungengewebe Transport: 4°C in VTM</td>
<td>neg/pos</td>
<td>Testdauer: 2 Tage bis 2 Woche Material innerhalb erster Krankheitstage entnehmen. Nachweis: auch mit mAk, gleichzeitige Typisierung</td>
</tr>
<tr>
<td>EM, Nachweis von Viruspartikeln</td>
<td></td>
<td>pos/neg</td>
<td>wird kaum eingesetzt</td>
</tr>
<tr>
<td>Virusantigen-Nachweis IFT, EIA</td>
<td>Abstrich/Aspirat: Na, Ra, BAL Proben müssen Epithelzellen enthalten</td>
<td>pos/neg</td>
<td>Testdauer: 2-3h (Schnelltest, wichtig bei Amantadintherapie bei Influenza-A-Infektion), Erfolg abhängig von guter Technik und frühzeitiger Entnahme (erste drei Krankheitstage) Testdauer: 10 min Sens: 60-80%</td>
</tr>
</tbody>
</table>

Schnelltests

<table>
<thead>
<tr>
<th>Methode</th>
<th>Probenmaterial/transport</th>
<th>Ergebnis/Einheit</th>
<th>Anmerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>RT-PCR</td>
<td>Abstrich/Aspirat: Na, Ra, BAL Lungengewebe bei Todesfällen</td>
<td>pos/neg</td>
<td>kann Anzüchtung evtl. ersetzen, gleichzeitig Typisierung möglich</td>
</tr>
</tbody>
</table>

Nachweis spezifischer Antikörper

<table>
<thead>
<tr>
<th>Methode</th>
<th>Probenmaterial/transport</th>
<th>Ergebnis/Einheit</th>
<th>Anmerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT</td>
<td></td>
<td></td>
<td>Sens und Spez: hoch, zeitaufwändig, routinemäßig nur selten verfügbar</td>
</tr>
<tr>
<td>ELISA/IFT (IgG-, IgA-Nachweis)</td>
<td>Serum</td>
<td>neg/pos ggf. Titer (IFT)</td>
<td>einfache Durchführung, IgA-Ak-Hinweis auf kürzliche Infektion (nicht immer zuverlässig)</td>
</tr>
</tbody>
</table>
7.23.4 Untersuchungsindikationen und Materialien

Akute Infektion:
In Epidemiezeiten (Erkrankungen bei bis zu 20% der gesamten Bevölkerung in wenigen Wochen) wird das charakteristische Krankheitsbild (akute Erkrankung mit plötzlichem Beginn, schweres Krankheitsgefühl) auch ohne Labordiagnostik erkannt. Die Labordiagnose sollte in ausgewählten Fällen, insbesondere zu Beginn einer Epidemie, durchgeführt werden, um das ätiologische Virus nachzuweisen. Diagnose durch Isolierung (Vorteil zusätzlicher Möglichkeiten der antigenetischen Charakterisierung für die globale Überwachung der Influenza und für Impfstoff-Empfehlungen), Antigennachweis oder PCR aus geeignetem Material. Wenn der Patient erst nach längerer Krankheitsdauer (> 4–5 Tage) vorstellig wird, Diagnostik über Antikörpertiteranstieg im Serumpaar.

Todesfälle mit v. a. Influenza:
Materiell zur Virustypisierung bald nach dem Tod entnehmen. Geeignet sind Rachenabstriche, Bronchus-, Trachea- oder Lungenwinkel (jeweils Kirschgrösse).

Immunität:
Nachweis spezifischer IgG-Ak im Serum mittels HHT, evtl. auch durch hierauf geprüfte ELISA.

Impferfolg:
Nachweis spezifischer IgG-Ak mittels HHT.

Epidemiologie:
Frisch angezüchtete Influenzavirustämme sollten zur Feintypisierung der Isolate an die Nationalen Referenzzentren für Influenza des RKI in Berlin oder des Niedersächsischen Landesgesundheitsamtes in Hannover gesandt werden. Dies ist für die Bestimmung der epidemiologischen Situation und die Aktualisierung der Impfempfehlungen von großer Bedeutung.

Virusvermehrung/ -Ausscheidung:
Bei Erwachsenen: maximale Replikation 48 Stunden nach Inokulation; dann Abfall; geringe Ausscheidung nach 6–8 Tagen. Virus-Antigen kann einige Tage länger als infektöses Virus in Atemwegssekreten nachgewiesen werden. Virusstiter in Nasenspülung bei symptomatischen Patienten $10^{3.0} - 10^{7.0}$ PFU/ml. Bei Asymptomatik oder geringen Symptomen $<10^{1.0}$ PFU/ml.

Bei Kindern: Ausscheidung bis 13 Tage nach Symptombeginn. Nach Rückgang des Fiebers unter antiviraler Therapie weiterhin Virusausscheidung!
Bei immunsupprimierten Patienten nach Therapieende häufig Ausscheidung von resistenten Virusmutanten über mehrere Monate!

7.23.5 Virologische Interpretationen und klinische Bedeutung

- Virusisolierung, Genomnachweis mittels RT-PCR und Ag-Nachweis: gesicherte Infektion
- 4-facher Ak-Anstieg: gesicherte Infektion
- HHT-Titer ab 1:40: Immunität.

7.23.6 Besondere diagnostische Probleme

- Beim Antigennachweis werden Viren oder Virusbestandteile in infizierten Zellen im Untersuchungsmaterial nachgewiesen. Die Untersuchungsproben müssen daher eine ausreichende Menge von Epithelzellen enthalten.
- Bei der KBR gibt die Titerhöhe im Einzelserum nur einen unsicheren Hinweis auf eine akute Infektion, da die komplementbindenden Ak noch Monate nach der Infektion nachweisbar sein können.
- Die nach einer Influenzaimpfung gebildeten Ak sind im HHT und häufig auch in der KBR nachweisbar. Impfungen müssen bei der Interpretation der serologischen Tests berücksichtigt werden.

7.23.7 Meldepflicht

Dem Gesundheitsamt wird gemäß § 7 Abs. 1 IfSG nur der direkte Nachweis von Influenzaviren, soweit er auf eine akute Infektion hinweist, namentlich gemeldet.
7.24 Masernvirus (Familie: Paramyxoviridae - Morbillivirus)

7.24.1 Erreger und Infektion

7.24.1.2 Virus

7.24.1.2 Epidemiologie

7.24.1.3 Infektionsformen
i.d.R. akute Infektion mit vollständiger Ausheilung, die eine lebenslange Immunität hinterlässt. Viruspersistenz wird vermutet. Bei der seltenen subakuten sklerosierenden Panenzephalitis (SSPE) kommt es zur Persistenz defekter Viren im ZNS.

7.24.1.4 Inkubationszeit
Die Inkubationszeit beträgt 10-14 Tage.

7.24.2 Symptome/Erkrankungen
Die Erkrankung beginnt mit einem uncharakteristischen Prodromalstadium mit katarhalischen Symptomen (Fieber, Konjunktivitis, Husten, Schnupfen), in dessen Verlauf häufig die charakteristischen Koplik-Flecken auf der Wangenschleimhaut auftreten. Nach einigen Tagen erscheint als typisches Krankheitssymptom ein makulopapulöses Exanthem, das mehrere Tage bestehen bleibt. Die häufigsten Komplikationen sind Otitis media, Pneumonie, Diarrhö und die Masernenzephalitis, die in etwa 1 von 1000 Erkrankungsfällen auftritt. Eine seltene Spätkomplikation ist die subakute sklerosierende Panenzephalitis (SSPE), deren Frequenz ungefähr 1:10 000 bis 1:100 000 beträgt. Bei Anwesenheit von passiv

7.24.3 Diagnostische Methoden

Nachweis von Viren oder Virusbrandteilen (Antigen/Nukleinsäure)

<table>
<thead>
<tr>
<th>Methode</th>
<th>Probenmaterial/Transport</th>
<th>Ergebnis/Einheit</th>
<th>Anmerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virusisolierung</td>
<td>Urin</td>
<td>pos/neg</td>
<td></td>
</tr>
<tr>
<td>Abstrich/Aspirat: NA, RA, AuA, Lymphozyten (EDTA-Blut), BAL</td>
<td>Transport: max. 2 Tage bei 4°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EM (Nachweis von Viruspartikeln, Einschlusskörpers)</td>
<td>Abstrich/Aspirat: NA, RA (Prodromalstadium), Hirnbiopsie, BAL</td>
<td>Transport: max. 2 Tage bei 4°C/70°C</td>
<td>histologisch Nachweis von vielkernigen Riesenzellen mit Einschlusskörpern</td>
</tr>
<tr>
<td>Histologie/Zytologie</td>
<td>Abstrich/Aspirat: NA, RA (Prodromalstadium), Lymphozyten (EDTA-Blut), Hirnbiopsie, BAL</td>
<td>Transport: max. 2 Tage bei 4°C/70°C (Hirn)</td>
<td>pos/neg</td>
</tr>
<tr>
<td>Nachweis viraler Antigene im Originalmaterial mit IFT, EIA, IHA</td>
<td>Abstrich/Aspirat: NA, RA (Prodromalstadium), Lymphozyten (EDTA-Blut), Hirnbiopsie, BAL</td>
<td>Transport: max. 2 Tage bei 4°C/70°C (Hirn)</td>
<td>pos/neg</td>
</tr>
<tr>
<td>RT-PCR: nach RNA-Extraktion</td>
<td>Lymphozyten (EDTA Blut), Urin, BAL, Abstrich/Aspirat: NA, RA, Hirnbiopsie (nicht fixiert). Transport: max. 2 Tage bei 4°C/70°C</td>
<td>pos/neg</td>
<td></td>
</tr>
</tbody>
</table>

Nachweis spezifischer Antikörper

<table>
<thead>
<tr>
<th>Methode</th>
<th>Probenmaterial/Transport</th>
<th>Ergebnis/Einheit</th>
<th>Anmerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT</td>
<td>Serum</td>
<td>Titer</td>
<td></td>
</tr>
<tr>
<td>ELISA, IFT</td>
<td>Serum</td>
<td>U/B, Titer</td>
<td>ELISA gut standardisiert</td>
</tr>
<tr>
<td>Antikörperindexbestimmung</td>
<td>Serum/Liquor-Paar</td>
<td>Antikörperindex</td>
<td>gut standardisiert mit ELISA und Standardkurve</td>
</tr>
<tr>
<td>IEF mit Immunoblot</td>
<td>Serum/Liquor-Paar</td>
<td>virusspezifische oligoklonale Banden</td>
<td></td>
</tr>
<tr>
<td>HHT, KBR, Hämolsyn-Hemmtest</td>
<td>Serum</td>
<td>Titer</td>
<td>HHT korreliert gut mit NT</td>
</tr>
</tbody>
</table>

7.24.4 Untersuchungsindikationen und Materialien

Immunität:
IgG-Ak-Bestimmung mittels ELISA im Serum. In fraglichen Fällen NT, HHT oder Hämolsyn-Hemmtest im Serum.

Primärinfektion:
IgM/IgG-Ak-Bestimmung aus Serum. In fraglichen Fällen im Prodromalstadium oder bei immunsupprimierten Patienten VirusdirektNachweise, z. B. mit PCR oder Virusisolierung aus Urin oder Lymphozyten, entnommen.

Bearbeiter*in
Dr. Gentner-Göbel, Eva
Freigeben*in
Prof. Dr. Stammlinger, Thomas
ID 22223
Revision 2005/12/09 2022
Seite 107 von 373

Ausgedrückt ist das Dokument eine unkontrollierte Kopie und unterliegt nicht dem Änderungsdienst
zu Krankheitsbeginn. Bei Geimpften mit Verdacht auf Masernerkranzung zusätzlich IgG- oder HHT-Bestimmung in einem Abstand von 7 Tagen entnommenen Serumpaar.

Postinfektöse Enzephalitis:
IgM-/IgG-Ak-Bestimmung aus Serum.

Riesenzellpneumonie:
IgM/IgG-Ak-Bestimmung aus Serum. PCR oder Virusisolierung aus BAL.

MIBE:
IgM-/IgG-Ak-Bestimmung aus Serum. PCR aus Hirnbiopsie oder Liquor. Nachweis intrathekaler Masernvirus-IgG-Synthese mittels ELISA (Antikörperindex).

SSPE:
Nachweis intrathekaler Masernvirus-IgG-Synthese mittels ELISA (Antikörperindex) oder isoelektrische Fokussierung (IEF) mit Immunoblot (oligoklonale Banden); Material: gleichzeitig entnommenes Serum/Liquor-Paar. Versand: ungekühlt.

Notfalldiagnostik:
Besonders bei Verdacht auf Riesenzellpneumonie oder MIBE ist wegen der hohen Letalität eine schnelle Diagnosesicherung erforderlich.

7.24.5 Virologische Interpretationen und klinische Bedeutung

Immunität:

Primärinfektion:
Postinfektiöse Enzephalitis:

Riesenzellpneumonie:
Der Nachweis von Masernvirus in der BAL und/oder positive Masernvirus-IgM-Antikörper im Serum bei entsprechender klinischer Symptomatik sprechen für eine Masernpneumonie. Bei Immunsuppression ist die Antikörperantwort nicht verlässlich. Andererseits erhalten diese Patienten häufig Immunglobuline, so dass IgG-Ak-Bestimmungen unter Umständen nicht aussagekräftig sind.

MIBE:

SSPE:
Eine intrathekale Masernvirus-IgG-Synthese wird auch als Teil der polyspezifischen intrathekalen IgG-Synthese bei einer MS oder bei Autoimmunerkrankungen mit ZNS-Beteiligung gefunden. Eine Abgrenzung zur SSPE bereitet jedoch in der Regel keine Probleme.

7.24.6 Besondere diagnostische Probleme

Keine
7.24.7 Meldepflicht
Meldepflicht nach §§6 und 7 IfSG namentlich an das Gesundheitsamt.

7.25 Mumpsivirus (Familie: Paramyxoviridae - Rubulavirus)

7.25.1 Erreger und Infektion

7.25.1.1 Virus
Ausgeprägt pleomorphe (sphärische bis filamentöse) Viruspartikel mit einem Durchmesser von 100-600 nm. Das Mumpsivirus besitzt eine Hülle und trägt auf der Oberfläche 12-15 nm lange, dornförmige Fortsätze (Glykoproteine HN und F). Das Matrixprotein M befindet sich an der Innenseite der Hülle. Das im Inneren gelegene Nukleokapsid (Proteine N und P) ist helikal und enthält eine Minusstrang-RNA (15,3 kb). Neben der Polymerase kodiert und das Virus noch für ein kleines siebtes, membranassoziertes Protein SH. Es besteht eine immunologische Kreuzreaktion mit anderen Paramyxoviren.

7.25.1.2 Epidemiologie

7.25.1.3 Infektionsformen
Akute in der Regel selbstlimitierende Infektion; seltene persistierende Infektionen des ZNS scheinen vorzukommen. Die Infektion führt zu langanhaltender Immunität.

7.25.1.4 Inkubationszeit
Die Inkubationszeit beträgt 18-21 Tage.
7.25.2 Symptome/Erkrankungen

Die Infektion führt bei ca. 70% aller Fälle nach einem kurzen, unspezifischen Prodromalstadium zu ein- oder (meist) beidseitiger Parotitis, gelegentlich auch Entzündung der anderen Speicheldrüsen, meist begleitet von Fieber bis 40°C. Üblicherweise klingt die Entzündung innerhalb von 10-14 Tagen ab. Als Komplikationen können eine Orchitis (bei ca. 25% aller nach der Pubertät Erkrankten) sowie eine (aseptische) Meningitis (in etwa 10% aller Fälle, bei männlichen Patienten 2- bis 3-mal so häufig wie bei weiblichen), eine bleibende Schwerhörigkeit und gelegentlich eine Pankreatitis (bis zu 5%) auftreten. Ca. 30% der Infektionen verlaufen inapparent (insbesondere bei Kindern unter zwei Jahren und älteren Erwachsenen über 60 Jahren).

7.25.3 Diagnostische Methoden

Nachweis von Viren oder Virusbestandteilen (Antigen/Nukleinsäure)

<table>
<thead>
<tr>
<th>Methode</th>
<th>Probenmaterial/Transport</th>
<th>Ergebnis/Einheit</th>
<th>Anmerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virusisolierung</td>
<td>Urin, Liquor, Speichel. Abstrich/Aspirat: RA, Wangenschleimhaut, Speicheldrüsen-Ausführungsgang; in VTM</td>
<td>pos/neg</td>
<td>Speichel 5 Tage vor bis ca. 7 Tage nach Erkrankung, Liquor länger positiv, Liquor nur am 1.-2. Erkrankungstag sinnvoll. Testdauer: bis 10 Tage</td>
</tr>
<tr>
<td>IFT mit mAk Nachweis viraler Antigene</td>
<td>Zellen aus Rachen- Sekret oder Urin</td>
<td></td>
<td>wird selten angewendet</td>
</tr>
<tr>
<td>Nachweis viraler RNA durch RT-PCR</td>
<td>Liquor, auch Urin, Speichel</td>
<td></td>
<td>Differenzierung Wild- und Impfstamm</td>
</tr>
</tbody>
</table>

Nachweis spezifischer Antikörper

<table>
<thead>
<tr>
<th>Methode</th>
<th>Probenmaterial/Transport</th>
<th>Ergebnis/Einheit</th>
<th>Anmerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT</td>
<td>Serum, Liquor</td>
<td>Titer</td>
<td>möglich, sehr aufwändig</td>
</tr>
<tr>
<td>ELISA</td>
<td>Serum, Liquor</td>
<td>spezifische IgM-Antikörper, Titeranstieg, Serokonversion</td>
<td>Kreuzreaktionen mit Parainfluenza Typ 2</td>
</tr>
<tr>
<td>KBR/HHT mit Vollantigenen</td>
<td>Serum, Liquor</td>
<td>Titeranstieg, Serokonversion</td>
<td>wird selten angewendet</td>
</tr>
</tbody>
</table>

7.25.4 Untersuchungsindikationen und Materialien

7.25.5 Virologische Interpretationen und klinische Bedeutung

Jeder Virusnachweis beweist eine akute Infektion.

Interpretation der Antikörperbefunde (Titer abhängig vom Testsystem)

<table>
<thead>
<tr>
<th>akuter Mumps (Parotitis)</th>
<th>IgM-ELISA</th>
<th>IgG-ELISA</th>
<th>KBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-5 Tage</td>
<td>>1:500</td>
<td>negativ</td>
<td>negativ</td>
</tr>
<tr>
<td>6-12 Tage</td>
<td>>1:4000</td>
<td>>1:2000</td>
<td>>1:16</td>
</tr>
<tr>
<td>>30 Tage</td>
<td>>1:500</td>
<td>>1:8000</td>
<td>>1:128</td>
</tr>
<tr>
<td>>2 Jahre</td>
<td>negativ</td>
<td>>1:2000 (oft niedriger)</td>
<td><1:8</td>
</tr>
</tbody>
</table>

Bearbeiter*in: Freigebrauch*in: ID: Revision: Seite:
Dr. Gentner-Göbel, Eva: Prof. Dr. Stamminger, Thomas: 22223: 005/12.09.2022: 111 von 173
<table>
<thead>
<tr>
<th>Liquor bei Mumps-Meningitis</th>
<th>meist negativ</th>
<th>>1:200</th>
<th>negativ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reinfektion (selten nach Impfung!)</td>
<td>negativ</td>
<td>>1:100</td>
<td>negativ</td>
</tr>
<tr>
<td>symptomatische Reinfektion (sehr selten)</td>
<td>negativ</td>
<td>>1:8000</td>
<td>>1:128</td>
</tr>
</tbody>
</table>

7.25.6 Besondere diagnostische Probleme

Bei spezifischen IgG-Antikörpern Kreuzreaktion mit Parainfluenzavirus Typ 2 beachten.

7.25.7 Meldepflicht

keine

7.26 Norovirus (Familie: Caliciviridae)

7.26.1 Erreger und Infektion

7.26.1.1 Virus

7.26.1.2 Epidemiologie

<table>
<thead>
<tr>
<th>Bearbeiter*in</th>
<th>Freigabe*in</th>
<th>ID</th>
<th>Revision</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Gentner-Göbel, Eva</td>
<td>Prof. Dr. Stamminger, Thomas</td>
<td>22222</td>
<td>09/12.09.2022</td>
<td>112 von 173</td>
</tr>
</tbody>
</table>
7.26.1.3 Infektionsformen
Das Norovirus ist die Ursache für ganzjährig epidemieartig auftretende akute, selbstlimitierende Infektionen. Es sind keine chronischen Infektionen bekannt (längere Virusausscheidung bei immunsupprimierten Patienten!), jedoch sind Reinfektionen möglich. Die Schutzwirkung von Serumantikörpern ist unklar.

7.26.1.4 Inkubationszeit
Die Inkubationszeit beträgt ca. 6–50 h (Mittel: 24 h).

7.26.2 Symptome/Erkrankungen

7.26.3 Diagnostische Methoden
Nachweis von Viren oder Virusbestandteilen (Antigen/Nukleinsäure)

<table>
<thead>
<tr>
<th>Methode</th>
<th>Probenmaterial/Transport</th>
<th>Ergebnis/Einheit</th>
<th>Anmerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virussolierung</td>
<td></td>
<td></td>
<td>nicht verfügbar</td>
</tr>
<tr>
<td>EM (Nachweis von Viruspartikeln), Immunoelektronenmikroskopie (IEM)</td>
<td>Stuhl (Erbrochenes), Innerhalb von 72 h nach Symptombeginn</td>
<td>pos/neg (27x32nm große, runde Partikel)</td>
<td>Speziallabor: geringe Partikelkonzentration, höhere Spezifität der IEM</td>
</tr>
<tr>
<td>Nachweis viraler Antigene (EIA)</td>
<td>Stuhl (Erbrochenes)</td>
<td>pos/neg</td>
<td>kommerziell verfügbar, bevorzugt bei Ausbrüchen</td>
</tr>
<tr>
<td>Nachweis viraler RNA (RT-PCR)</td>
<td>Stuhl (Erbrochenes)</td>
<td>pos/neg</td>
<td>Sens: hoch, Spez: hoch, Goldstandard, Nachweis der Genotypen mittels multiplex RT-PCR möglich</td>
</tr>
</tbody>
</table>

Nachweis spezifischer Antikörper

<table>
<thead>
<tr>
<th>Methode</th>
<th>Probenmaterial/Transport</th>
<th>Ergebnis/Einheit</th>
<th>Anmerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutralisation der Infektiosität</td>
<td></td>
<td></td>
<td>nicht möglich</td>
</tr>
<tr>
<td>ELISA (blocking ELISA (rekombinant))</td>
<td>Serum</td>
<td>pos/neg</td>
<td>Speziallabor, in Entwicklung</td>
</tr>
</tbody>
</table>

7.26.4 Untersuchungsindikationen und Materialien

7.26.5 Virologische Interpretationen und klinische Bedeutung
Jeder Nachweis von Viren beweist eine akute Infektion.
7.26.6 Besondere diagnostische Probleme

- Noroviren sind bisher nicht in der Zellkultur anzüchtbar.
- Untersuchungen an Labortieren sind kaum möglich, da diese nicht erkranken.
- Antikörpernachweise spielen noch eine untergeordnete Rolle bei der Diagnostik symptomatischer Infektionen.
- Serumantikörper korrelieren nicht mit einem Schutz vor Erkrankung.

7.26.7 Meldepflicht

Es besteht gemäß §7 Abs. 1 IfSG eine namentliche Meldepflicht beim direkten oder indirekten Nachweis von Norovirus, soweit er auf eine akute Infektion hinweist.

7.27 Papillomaviren (HPV) (Familie: Papillomaviridae)

7.27.1 Erreger und Infektion

7.27.1.1 Virus

7.27.1.2 Epidemiologie

<table>
<thead>
<tr>
<th>Bearbeiter*in</th>
<th>Freigeber*in</th>
<th>ID</th>
<th>Revision</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Gentner-Göbel, Eva</td>
<td>Prof. Dr. Stamminger, Thomas</td>
<td>22223</td>
<td>005/12.09.2022</td>
<td>114 von 373</td>
</tr>
</tbody>
</table>
7.27.1.3 Infektionsformen

7.27.1.4 Inkubationszeit

Die Inkubationszeit beträgt vermutlich mehr als 3-4 Wochen.

7.27.2 Symptome/Erkrankungen

Infektionen mit Papillomaviren führen zur Bildung von Warzen, spitzen Kondylomen und Dysplasien unterschiedlicher Morphologie (Plaques, verruköse Warzen, Zysten, invertierte Papillome). Diese meist gutartigen Manifestationen können maligne entarten in Plattenepithelkarzinome (Haut und Genitale), Adenokarzinome (Genitale), Basalzellkarzinome (Haut). Bestimmte Manifestationsformen sind bevorzugt, aber nicht ausschließlich mit einzelnen Genotypen assoziiert.

Beispiele für Manifestationsformen verschiedener HPV-Typen

<table>
<thead>
<tr>
<th>Hautwarzen</th>
<th>Manifestationen</th>
<th>häufig gefundene HPV-Typen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>tiefe Plantarwarzen</td>
<td>1, 2, 4, 27, 57</td>
</tr>
<tr>
<td></td>
<td>Vulgarwarzen</td>
<td>3, 10</td>
</tr>
<tr>
<td></td>
<td>plane juvenile Warzen</td>
<td>5, 8, 17, 20, 36 (und viele andere)</td>
</tr>
<tr>
<td></td>
<td>makulöse Veränderungen bei Epidermo-dysplasia verruciformis</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anogenitalläsionen</th>
<th>Manifestationen</th>
<th>häufig gefundene HPV-Typen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>spitze Kondylome</td>
<td>6, 11, 41, u.a.</td>
</tr>
<tr>
<td></td>
<td>intraepitheliale Dysplasien: Zervix, Vagina, Vulva und Penis</td>
<td>6, 11, 16, 18, 31, 33, u.a.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tumore im Kopf- und Halsbereich</th>
<th>Manifestationen</th>
<th>häufig gefundene HPV-Typen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>orale Papillome und Leukoplakien</td>
<td>2, 6, 11, 16, u.a.</td>
</tr>
<tr>
<td></td>
<td>fokale Hyperplasie Heck</td>
<td>13, 32</td>
</tr>
<tr>
<td></td>
<td>Konjunktivalpapillome</td>
<td>6, 11</td>
</tr>
<tr>
<td></td>
<td>Larynxpapillome</td>
<td>6, 11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maligne Tumore</th>
<th>Manifestationen</th>
<th>häufig gefundene HPV-Typen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Plattenepithelkarzinome der Haut bei Epidermodysplasia verruciformis</td>
<td>5, 8, u.a.</td>
</tr>
<tr>
<td></td>
<td>Zervix-, Vulva-, Vagina- und Adenokarzinome</td>
<td>6, 18, u.a.</td>
</tr>
</tbody>
</table>
Im Verlauf der Infektion bilden sich meist niedrigtitrige Antikörper gegen späte (selten auch gegen frühe) Proteine des Virus, die möglicherweise vor Reinfektion schützen. Bei der Kontrolle persistierender Infektionen steht wahrscheinlich die zelluläre Immunität im Vordergrund, da unter Immunsuppression (z. B. bei Transplantationspatienten, HIV-Infektion) gehäuft multifokale und rezidivierende Papillome und Tumore beobachtet werden.

7.27.3 Diagnostische Methoden

Nachweis von Viren oder Virusbestandteilen (Antigen/Nukleinsäure)

<table>
<thead>
<tr>
<th>Methode</th>
<th>Probenmaterial/Transport</th>
<th>Ergebnis/Einheit</th>
<th>Anmerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virusisolierung</td>
<td></td>
<td>pos/neg</td>
<td>nur Transformationstest in Gewebekultur möglich</td>
</tr>
<tr>
<td>EM (Nachweis von Viruspartikeln, Einschlusskörpern) – Histologie/Zytologie</td>
<td>Biopsiematerial</td>
<td>typische Histologie bei kutanen HPV-Typen</td>
<td>relativ hoher Aufwand zytolog. Hinweise bei genitalen Abstrichen (Kolloidzente)</td>
</tr>
<tr>
<td>Nachweis viraler Antigene, Immunzytochemie</td>
<td>Abstrichzellen, Biopsien</td>
<td>pos/neg</td>
<td>praktisch ohne Bedeutung</td>
</tr>
</tbody>
</table>

Nachweis spezifischer Antikörper

<table>
<thead>
<tr>
<th>Methode</th>
<th>Probenmaterial/Transport</th>
<th>Ergebnis/Einheit</th>
<th>Anmerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT</td>
<td></td>
<td>nicht möglich</td>
<td></td>
</tr>
<tr>
<td>ELISA</td>
<td></td>
<td>in der Entwicklung</td>
<td></td>
</tr>
<tr>
<td>HHT</td>
<td></td>
<td>in der Entwicklung</td>
<td></td>
</tr>
</tbody>
</table>

7.27.4 Untersuchungsindikationen und Materialien

Indikationen zum HPV-DNA-Nachweis:
1. Patientinnen mit unklarer Zytologie im Zervixabstrich
2. Patientinnen mit leicht- und mittelgradigen Dysplasien im Zervixabstrich
4. Papillome an anderen Lokalisationen (z. B. Larynxpapillome)

Abstrich:
in Kochsalzlösung einfrieren, eingefroren verschicken.

Biopsie:
einfrieren bei -20 °C/-70 °C ohne Flüssigkeit; eingefroren verschicken.
Siehe auch Leitlinien der Deutschen Gesellschaft für Gynäkologie und Geburtshilfe (DGGG).
7.27.5 Virologische Interpretationen und klinische Bedeutung

Beim positiven Nachweis von so genannten Hochrisiko-HPV-Typen im Genitalbereich sind kürzere Intervalle zwischen Kontrolluntersuchungen angezeigt. Bei negativem Ergebnis ist eine Präkanzerose oder ein Karzinom bzw. die Progression einer Dysplasie unwahrscheinlich.

7.27.6 Besondere diagnostische Probleme

Mehr als 150 HPV-Typen sind bekannt. Die derzeit verfügbaren Tests decken allerdings nur eine begrenzte Typenanzahl mit unterschiedlicher Sensitivität ab. Daher ist ein negativer Befund nicht absolut aussagekräftig.

7.27.7 Meldepflicht

keine

7.28 Parainfluenzaviren (Familie: Paramyxoviridae)

7.28.1 Erreger und Infektion

7.28.1.1 Virus

Parainfluenzaviren sind pleomorphe Virusspezialformen (Durchmesser 150–300 nm), die aus einem helikalen Nukleokapsid und einer Lipidhülle bestehen. Letztere trägt die Oberflächenantigene HN und F, die für die Bildung von schützenden Antikörpern verantwortlich sind. Das Genom besteht aus einem einzelsträngigen, nichtsegmentierten RNA-Molekül (ca. 15,4 kb), das für 6 Struktur- und 2 Nichtstrukturproteine kodiert. Es sind 4 Serotypen bekannt, von denen 3 gut charakterisiert sind.

7.28.1.2 Epidemiologie

<table>
<thead>
<tr>
<th>Bearbeiter*in</th>
<th>Freigabe*in</th>
<th>ID</th>
<th>Revision</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Gemptner-Göbel, Eva</td>
<td>Prof. Dr. Stamminger, Thomas</td>
<td>22223</td>
<td>005/2022.09.22</td>
<td>117 von 173</td>
</tr>
</tbody>
</table>
7.28.1.3 Infektionsformen

7.28.1.4 Inkubationszeit
Die Inkubationszeit beträgt 3–6 Tage.

7.28.2 Symptome/Erkrankungen
Parainfluenzaviren verursachen 30–40% aller akuten Infektionen des Respirationstraktes bei Kleinkindern und Kindern.

Typische Symptome der verschiedenen Serotypen

<table>
<thead>
<tr>
<th>Serotypen</th>
<th>Hauptalter</th>
<th>Symptome schwer</th>
<th>Symptome mild</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typ 1</td>
<td><6–30 Monate</td>
<td>Krupp</td>
<td>Fieber, Symptome im oberen Respirationstrakt</td>
</tr>
<tr>
<td>Typ 2</td>
<td><6–30 Monate</td>
<td>Krupp, Tracheobronchitis</td>
<td>Symptome im oberen Respirationstrakt ohne Fieber</td>
</tr>
<tr>
<td>Typ 3</td>
<td><1–24 Monate</td>
<td>Pneumonie, Bronchiolitis</td>
<td>Fieber, Symptome im oberen Respirationstrakt</td>
</tr>
<tr>
<td>Typ 4a, b</td>
<td>>24 Monate</td>
<td>Krupp</td>
<td>Symptome im oberen Respirationstrakt</td>
</tr>
<tr>
<td>Typ 4a, b</td>
<td>>6 Jahre</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reinfektion

<table>
<thead>
<tr>
<th>Serotypen</th>
<th>Hauptalter</th>
<th>Symptome schwer</th>
<th>Symptome mild</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typ 1, 2</td>
<td>Kinder, Erwachsene innerhalb weniger Monate bis Jahre nach Erstinfekt</td>
<td>selten</td>
<td>Erkältung, Bronchitis</td>
</tr>
<tr>
<td>Typ 3, häufig</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7.28.3 Diagnostische Methoden

Nachweis von Viren oder Virusbestandteilen (Antigen/Nukleinsäure)

<table>
<thead>
<tr>
<th>Methode</th>
<th>Probenmaterial/Transport</th>
<th>Ergebnis/Einheit</th>
<th>Anmerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virusisolierung</td>
<td>Abstrich/Aspirat: NA, RA Transport: gekühlt, schnellstmöglich</td>
<td>pos/neg</td>
<td>Testdauer: KZK 24 h Isolierung 5 bis 14 Tage SenS: hoch</td>
</tr>
<tr>
<td>Nachweis von Viruspartikeln, Einschlusskörpern</td>
<td>nicht etabliert</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antigen-Nachweis im EIA mit pAK/mAK bzw. im IFT mit mAK</td>
<td>Abstrich/Aspirat: NA, RA, BAL</td>
<td>pos/neg</td>
<td>bei zellarem Material: EIA, bei zellreichem Material: IFT, unzuverlässige Methode</td>
</tr>
<tr>
<td>RT-PCR für RNA-Nachweis</td>
<td>Abstrich/Aspirat: NA, RA, BAL</td>
<td>pos/neg</td>
<td>SenS und Spez: hoch, nicht standardisiert</td>
</tr>
</tbody>
</table>

Bearbeiter*in: Dr. Gentner-Göbel, Eva
Freigeber*in: Prof. Dr. Stamniger, Thomas
ID: 22223
Revision: 09/12/2022
Seite: 118 von 173
Nachweis spezifischer Antikörper

<table>
<thead>
<tr>
<th>Methode</th>
<th>Probenmaterial/Transport</th>
<th>Ergebnis/Einheit</th>
<th>Anmerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT</td>
<td></td>
<td></td>
<td>nicht etabliert</td>
</tr>
<tr>
<td>ELISA (Ig-</td>
<td>Blut/Serum</td>
<td>Titer, Serokonversion</td>
<td>V.a. akute Infektion bei Titer >1:2048 (IgG), >1:256 (IgA)</td>
</tr>
<tr>
<td>KBR</td>
<td>Blut, Serum</td>
<td>Titer, Serokonversion</td>
<td>Vor allem akute Infektion etwa bei Titer >1:64; Sens: gering Spez: gering</td>
</tr>
</tbody>
</table>

7.28.4 Untersuchungsdiskussionen und Materialien

7.28.5 Virologische Interpretationen und klinische Bedeutung

Ein positiver Virusnachweis (Virusisolierung, Antigennachweis, ggf. Genomnachweis) beweist eine akute Infektion und weist auf eine ursächliche Beteiligung des Virus an der beobachteten Symptomatik hin. Eine Serokonversion oder ein wenigstens 4-facher Titeranstieg werden ebenfalls als Hinweis auf eine akute Infektion interpretiert.

Ein Verdacht auf eine kürzlich abgelaufene Infektion ist gegeben, wenn folgende Antikörpertiter gegen Parainfluenzaviren mit den entsprechenden Testverfahren beobachtet werden:
- IgG-ELISA: >1:2048
- IgA-ELISA: >1:256
- KBR: >1:64

7.28.6 Besondere diagnostische Probleme

- IgG-Antikörper werden wegen über einen Schutz vor einer Reinfektion aus.
- In allen serologischen Tests, am wenigsten in der KBR und beim IgM-Test, ist die typenspezifische Serodiagnose durch mögliche heterotypische Antikörperreaktionen eingeschränkt. Bei Reinfektion beobachtet man auch einen Anstieg der Antikörper gegen einige andere Parainfluenzaviren (z.B. gegen Mumps, nicht aber gegen RSV).

7.28.7 Meldepflicht

nach §7-9 IfSG: Isolation, Serokonversion, PCR
7.29 Parvovirus B19 (PVB19) (Familie: Parroviridae - Erythroivirus)

7.29.1 Erreger und Infektion

7.29.1.1 Virus

7.29.1.2 Epidemiologie

7.29.1.3 Infektionsformen

7.29.1.4 Inkubationszeit
Die Inkubationszeit beträgt 7-20 Tage.

7.29.2 Symptome/Erkrankungen
Bei Kindern Erythema infectiosum (Ringelröteln); bei Erwachsenen vielfach grijpaler Infekt ohne Exanthem; Arthritis und Arthralgien können bei jedem Geschlecht und in allen Altersgruppen auftreten.

- Komplikationen: Hydrops fetalis nach transzembraner Infektion; Spontanaborte in der Frühschwangerschaft, Arthritis, transiente aplastische Krise bei Patienten mit chronisch-hämolytischer
Anämie; kongenitale „red-cell“-Aplasie, Thrombozytopenie chronische Knochenmarks dysplasie (immunsupprimierte Patienten).

- **Selten Manifestationen:** Panzytopenie Meningitis/Enzephalopathie „gloves and socks“-Syndrom, Myokarditis, Vaskulitis, Hepatitis/Leberversagen.

7.29.3 Diagnostische Methoden

Nachweis von Viren oder Virusbestandteilen (Antigen/Nukleinsäure)

<table>
<thead>
<tr>
<th>Methode</th>
<th>Probenmaterial/Transport</th>
<th>Ergebnis/Einheit</th>
<th>Anmerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virusisolierung</td>
<td>pos/neg</td>
<td>nur experimentell möglich</td>
<td></td>
</tr>
<tr>
<td>EM</td>
<td>Blut</td>
<td>pos/neg</td>
<td>aufwändig, wenig sensitiv</td>
</tr>
<tr>
<td>Zytologie</td>
<td>Knochenmark-Asp.</td>
<td>typische</td>
<td>nur bedingt spezifisch</td>
</tr>
<tr>
<td></td>
<td>vergrößerte Pronormoblasten</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EIA, Hämagglutination, Immunpräzipitation, Gegenstromelektrophorese Nachweis viraler Antigene</td>
<td>Blut, Plasma, Serum</td>
<td>pos/neg</td>
<td>nur während der Hauptvirämie (7-10 Tage p. i.) vor Symptombeginn möglich</td>
</tr>
<tr>
<td>PCR</td>
<td>Blut, Plasma, Serum</td>
<td>pos/neg semiquant.</td>
<td>Sensitiv hoch; zum Virämiescreening</td>
</tr>
</tbody>
</table>

Nachweis spezifischer Antikörper

<table>
<thead>
<tr>
<th>Methode</th>
<th>Probenmaterial/Transport</th>
<th>Ergebnis/Einheit</th>
<th>Anmerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT</td>
<td>nicht verfügbar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELISA</td>
<td>Serum</td>
<td>pos/neg quant. (arbiträre und internationale Einheiten)</td>
<td>Anti-PVB19-IgM, IgG- (IgA-) Antikörper gegen Strukturproteine (Routine), Antikörper gegen Nichtstrukturprotein NS1 (experimentell)</td>
</tr>
<tr>
<td>IFT, Western Blot Line assay</td>
<td>Serum</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7.29.4 Untersuchungsindikationen und Materialien

Abklärung unkomplizierter Infektionen:

Ein Erythema infectiosum (EI) oder auch ein „grippaler Infekt“ mit und ohne Arthralgien nach Kontakt mit einem Patienten mit EI erfordert zur diagnostischen Klärung die Bestimmung von Anti-PVB19-IgM und Anti-PVB19-IgG vorzugsweise an gepaarten Serumproben.

Transiente aplastische Krise bei Patienten mit chronisch-hämolytischen Anämien:

Infektion in der Schwangerschaft:

Bei Verdacht auf Exposition bei einer Schwangeren ist zunächst die Bestimmung von Anti-PVB19-IgG und Anti-PVB19-IgM aus Blut-/Serumproben angezeigt. Bei Infektionsverdacht ist ein Virusgenomnachweis aus

Ausgedruckt ist das Dokument eine unkontrollierte Kopie und unterliegt nicht dem Änderungsdienst.

Anämie, Panzytopenie, Knochenmarkdysplasie, Verdacht auf chronische PVB19-Infektion bei Immunsupprimierten oder Patienten mit Immundefekten:

In erster Linie erfolgt der Virusgenomnachweis aus Blut/Serum und Knochenmarkaspirat; Antikörpernachweise und/oder Serokonversion sind unzuverlässig wegen passiv übertragener Antikörper im Zuge von Transfusionen.

Notfalldiagnostik:

Bei Verdacht auf Parvovirus-B19-Infektion in der Schwangerschaft, bei Patienten mit transienten aplastischen Krisen durch den Nachweis der viralen DNA.

7.29.5 Virologische Interpretationen und klinische Bedeutung

Akute Infektion:

Länger zurückliegende Infektion:
Anti-PVB19-IgG-Antikörper nachweisbar.

Persistierende/chronische Infektion:
7.29.6 Besondere diagnostische Probleme

- Die derzeit verfügbaren kommerziellen serologischen Testverfahren sind unterschiedlich spezifisch und sensitiv.

7.29.7 Meldepflicht

keine
7.30 Polyomaviren (JCV und BKV) (Familie: Polyomaviridae)

7.30.1 Erreger und Infektion

7.30.1.2 Virus

7.30.1.2 Epidemiologie

JCV- und BKV-Infektionen sind weltweit verbreitet. Die Durchseuchung der Bevölkerung beginnt im Kindestalter; die Übertragung der Viren erfolgt wahrscheinlich über den Respirationstrakt. Die Durchsuchungsraten mit BKV liegt zwischen 80 und 100% für JCV wurden 50-90% beobachtet.

7.30.1.3 Infektionsformen

7.30.1.4 Inkubationszeit

Die Inkubationszeit ist unbekannt.

7.30.2 Symptome/Erkrankungen

BKV ist mit tubulointerstitiellen Nephritiden (vor allem bei Nierentransplantierten) und mit teils schweren hämorrhagischen Zystitiden (vor allem Knochenmarktransplantierten) assoziiert. Für eine Vielzahl von weiteren Erkrankungen unter Immunsuppression, bei denen BKV-DNA ebenfalls nachgewiesen wurde, ist ein ätiologischer Zusammenhang noch nicht gesichert.

Ob und wenn ja welche Rolle humane Polyomaviren bei Tumor erkrankungen des Menschen spielen, ist noch nicht abschließend geklärt.

7.30.3 Diagnostische Methoden

Nachweis von Viren oder Virusbestandteilen (Antigen/Nukleinsäure)

<table>
<thead>
<tr>
<th>Methode</th>
<th>Probenmaterial/Transport</th>
<th>Ergebnis/Einheit</th>
<th>Anmerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virusisolierung</td>
<td>Urin oder Gewebeproben</td>
<td>pos/neg</td>
<td>kein Standardkultursystem vorhanden, keine Routinediagnostik</td>
</tr>
<tr>
<td>EM (Nachweis von Viruspartikeln, Einschlusskörperrn)</td>
<td>Biopsie, Liquor (Trockeneis)</td>
<td>pos/neg</td>
<td>nur für wissenschaftliche Zwecke relevant</td>
</tr>
<tr>
<td>Immunhistologie (Nachweis viraler Antigene)</td>
<td>Biopsie (Trockeneis) Gewebeschnitte</td>
<td>pos/neg</td>
<td></td>
</tr>
<tr>
<td>PCR – DNA-Extraktion</td>
<td>Liquor (RT), Hirnbiose (-20°C) BKV: Urin, Serum, Plasma (RT)</td>
<td>pos/neg</td>
<td>zurzeit beste diagnostische Möglichkeit</td>
</tr>
</tbody>
</table>

Nachweis spezifischer Antikörper

<table>
<thead>
<tr>
<th>Methode</th>
<th>Probenmaterial/Transport</th>
<th>Ergebnis/Einheit</th>
<th>Anmerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT</td>
<td></td>
<td></td>
<td>nicht etabliert, ohne diagnostischen Wert</td>
</tr>
<tr>
<td>Experimentelle Systeme für IgG- u. IgM-Nachweis</td>
<td></td>
<td></td>
<td>Antikörpernachweis im Liquor, keine Routinediagnostik</td>
</tr>
<tr>
<td>HHT, KBR</td>
<td></td>
<td></td>
<td>ohne diagnostischen Wert</td>
</tr>
</tbody>
</table>

7.30.4 Untersuchungsindikationen und Materialien

JCV:
- Der *Goldstandard für die PML-Diagnose* ist jedoch weiterhin die *Untersuchung von Hirngewebe*. Histopathologie und Nachweis viraler DNA oder spezifischer viraler Expression produkte können als sichere Methode zur Abgrenzung von anderen Krankheitsursachen angesehen werden, da die Menge des Virus im Gewebe und die histologischen Charakteristika des Probenmaterials aus aktiven Bereichen der viralen Vermehrung zweifelsfreie Aussagen ermöglichen. Eine aktive Vermehrung des Virus mit parallel einhergehender Zellzerstörung findet sich im Randbereich der Läsionen.
• Der Versand biotyper Materials muss für den Virusnachweis in situ in Trockeneis erfolgen. Für die Konservierung von Biopsiematerial für DNA-Extraktion und nachfolgende PCR reicht die Lagerung bzw. der Versand bei -20 °C.

BKV:
• Bei hämorrhagischer Zystitis bei Immunsupprimierten (vor allem Patienten nach KMT) kann der PCR-Nachweis von BK-Virus-DNA im Urin bei der Abgrenzung einer medikamentös-toxischen von einer infektiösen Ursache helfen.

7.30.5 Virologische Interpretationen und klinische Bedeutung
Jeder Nachweis von JCV- oder BKV-DNA beweist das Vorhandensein des Virus im Organismus.

JCV:
Da JCV-DNA zum Teil auch in Normalhirinen nachgewiesen werden kann, ist der JCV-DNA-Nachweis aus Gehirngewebe mittels PCR für die Diagnosestellung einer PML alleine nicht ausreichend. Ein PML-typisches histologisches Bild und positive immunhistologische Färbungen für Virus kapsid-Antigen beweisen das Vorliegen einer PML.

BKV:
Der Nachweis von BKV-DNA in Serum oder Plasma bei Nierentransplantierten ist mit einem erhöhten Risiko für das Auftreten einer BKV-Nephropathie assoziiert und sollte Kontrolluntersuchungen und bei entsprechendem Verdacht gegebenenfalls eine Nierenbiopsie zur Folge haben.

7.30.6 Besondere diagnostische Probleme
JCV:
Unter der steigenden Zahl der untersuchten Patienten fallen sowohl falsch negative Ergebnisse bei PML-Patienten als auch ein geringer Anteil falsch positiver Befunde bei immunsupprimierten Patienten ohne PML auf.

BKV:
Serologische Untersuchungen auf BKV-Antikörper haben aufgrund der hohen Durchseuchung für die BKV-Diagnostik keine Bedeutung.

7.30.7 Meldepflicht
keine

7.31 Poxviren: Molluscum-contagiosum-Virus (MCV) (Familie: Poxviridae - Molluscipoxvirus)

7.31.1 Erreger und Infektion

7.31.1.1 Virus
7.31.1.2 Epidemiologie

7.31.1.3 Infektionsformen
Auf die Haut lokalisierte Infektion, die bei immunologisch Gesunden spontan abheilt.

7.31.1.4 Inkubationszeit
Die Inkubationszeit beträgt 14–50 Tage.

7.31.2 Symptome/Erkrankungen

7.31.3 Diagnostische Methoden
Nachweis von Viren oder Virusbestandteilen (Antigen/Nukleinsäure)

<table>
<thead>
<tr>
<th>Methode</th>
<th>Probenmaterial/Transport</th>
<th>Ergebnis/Einheit</th>
<th>Anmerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virusisolierung</td>
<td>sägemäßiges Exprimat aus Dellwarzen, Biopsie</td>
<td>Pockenpartikel im EM Speziallabor</td>
<td></td>
</tr>
<tr>
<td>Histologie (Einschlusskörper)</td>
<td>sägemäßiges Exprimat aus Dellwarzen, Biopsie</td>
<td>typische Histologie Speziallabor</td>
<td></td>
</tr>
<tr>
<td>Virale Antigene (IFT mit Rekonvalzentenserien)</td>
<td>Hautbiopsie</td>
<td>Speziallabor</td>
<td></td>
</tr>
<tr>
<td>PCR – DNA-Extraktion</td>
<td>Hautbiopsie (Zellen/Gewebe)</td>
<td>pos/neg Speziallabor</td>
<td></td>
</tr>
</tbody>
</table>

Nachweis spezifischer Antikörper

<table>
<thead>
<tr>
<th>Methode</th>
<th>Probenmaterial/Transport</th>
<th>Ergebnis/Einheit</th>
<th>Anmerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT</td>
<td>Serum</td>
<td>pos/neg Speziallabor</td>
<td></td>
</tr>
<tr>
<td>MCV-ELISA</td>
<td>Serum</td>
<td>pos/neg Speziallabor</td>
<td></td>
</tr>
<tr>
<td>andere Ak-Nachweise</td>
<td>Serum</td>
<td>nicht etabliert</td>
<td></td>
</tr>
</tbody>
</table>

7.31.4 Untersuchungsindikationen und Materialien
7.31.5 Virologische Interpretationen und klinische Bedeutung

Positiver Virusnachweis ist beweisend für das Vorliegen einer Infektion mit Molluscum-contagiosum-Virus.

7.31.6 Besondere diagnostische Probleme

Im Einzelfall Abgrenzung von anderen therapeutbaren Hautläsionen. DD: Kryptokokkose, Histoplasmose, Basalzellkarzinom, pyogener Granulom.

7.31.7 Meldepflicht

keine

7.32 Poxviren: Vacciniaivirus (Familie: Poxviridae - Orthopoxvirus)

7.32.1 Erreger und Infektion

7.32.1.1 Virus

7.32.1.2 Epidemiologie

Vacciniaivirus sind ausgesprochen resistent gegen Umwelteinflüsse und bleiben unter trockenen Bedingungen auch auf Trägermaterialien wie Kleidern und Gegenständen jahrelang infektiös. Sie können durch direkten Kontakt und durch Aerosole übertragen werden. Das Virus hat ein breites Wirtsspektrum und wurde im Rahmen der Pockeneradikation als Impfstoff weltweit eingesetzt. Das einzige natürliche Reservoir als Ausgangspunkt für gelegentliche zoonotische Infektionen scheint derzeit in Büffeln auf dem indischen...

7.32.1.3 Infektionsformen:
Infektionen mit dem Vacciniaivirus verlaufen akut unter schneller Bildung von Nekrosen. Es gibt keine persistierenden Infektionen.

7.32.1.4 Inkubationszeit:
Die Inkubationszeit beträgt zwischen 3 und 50 Tagen.

7.32.2 Symptome/Erkrankungen

7.32.3 Diagnostische Methoden
Nachweis von Viren oder Virusbestandteilen (Antigen/Nukleinsäure)

<table>
<thead>
<tr>
<th>Methode</th>
<th>Probenmaterial/Transport</th>
<th>Ergebnis/Einheit</th>
<th>Anmerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virusisolierung</td>
<td>Exsudat, Blasenflüssigkeit, Pustelinhalt, Krusten von Hautläsionen</td>
<td>pos/neg</td>
<td>Testdauer: wenige Tage</td>
</tr>
<tr>
<td>Histologie (Einschlusskörper)</td>
<td></td>
<td>typische intrazyto-plasm. eosinophile EK</td>
<td></td>
</tr>
<tr>
<td>Virale Antigene (ELISA)</td>
<td>s. o.</td>
<td>Titer</td>
<td>4 h</td>
</tr>
<tr>
<td>PCR – DNA-Extraktion</td>
<td>s. o.</td>
<td>pos/neg</td>
<td>24 h</td>
</tr>
</tbody>
</table>

Nachweis spezifischer Antikörper

<table>
<thead>
<tr>
<th>Methode</th>
<th>Probenmaterial/Transport</th>
<th>Ergebnis/Einheit</th>
<th>Anmerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT (Plaque-Reduktions-Test)</td>
<td>Serum</td>
<td>Titer</td>
<td>Speziallabor</td>
</tr>
<tr>
<td>kompetitiver ELISA</td>
<td>Serum</td>
<td>spez. Antikörper, Titer</td>
<td>Speziallabor</td>
</tr>
<tr>
<td>andere Ak-Nachweise</td>
<td></td>
<td></td>
<td>keine</td>
</tr>
</tbody>
</table>

Bearbeiter*in: Dr. Gentner-Göbel, Eva
Freigeber*in: Prof.Dr. Stammlinger, Thomas
ID: 22222
Revision: 09/12.09.2022
Seite: 12 von 172

Ausgedruckt ist das Dokument eine unkontrollierte Kopie und unterliegt nicht dem Änderungsdienst.
7.32.4 Untersuchungsindikationen und Materialien

7.32.5 Virologische Interpretationen und klinische Bedeutung

7.32.6 Besondere diagnostische Probleme

7.32.7 Meldepflicht
bei begründetem klinischem Verdacht nach §6 Abs. 1 Nr. 5a IfSG (bedrohliche Krankheit, soweit nicht nach Nr. 1-4 meldepflichtig) und bei positiven Laborbefunden nach §7 Abs. 2 IfSG

7.33 Respiratory-Syncytial-Virus (RSV) (Familie: Paramyxoviridae – Pneumovirinae)

7.33.1 Erreger und Infektion

7.33.1.1 Virus
7.33.1.2 Epidemiologie

7.33.1.3 Infektionsformen

7.33.1.4 Inkubationszeit
Die Inkubationszeit beträgt 4 (3-7) Tage.
7.33.2 Symptome/Erkrankungen

<table>
<thead>
<tr>
<th>Säuglinge, Kleinkinder (bis 2 ¹/₂ Jahre)</th>
<th>ältere Kinder, Erwachsene</th>
</tr>
</thead>
<tbody>
<tr>
<td>• hohes Fieber, Rhinitis (70-90%)</td>
<td>• „banale Erkältung“</td>
</tr>
<tr>
<td>• Pharyngitis (>50%)</td>
<td>• selten Pneumonie (Immunsupprimierte, auch</td>
</tr>
<tr>
<td>• Tracheobronchitis, Krupp, Bronchitis,</td>
<td>bei Bewohnern von Altersheimen usw.</td>
</tr>
<tr>
<td>Pneumonien (15-40%)</td>
<td>kommen schwere Erkrankungen mit</td>
</tr>
<tr>
<td>• Konjunktivitis</td>
<td>Pneumonie vor)</td>
</tr>
<tr>
<td>• Otitis media (ca. 10-20%)</td>
<td></td>
</tr>
</tbody>
</table>

7.33.3 Diagnostische Methoden

Nachweis von Viren oder Virusbestandteilen (Antigen/Nukleinsäure)

<table>
<thead>
<tr>
<th>Methode</th>
<th>Probenmaterial/Transport</th>
<th>Ergebnis/Einheit</th>
<th>Anmerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virusisolierung</td>
<td>Abstrich/Aspirat: NA, RA</td>
<td>pos/neg</td>
<td>Testdauer: KZK 24 h</td>
</tr>
<tr>
<td></td>
<td>Transport: gekühlt,</td>
<td></td>
<td>Isolierung bis 14 Tage, nach</td>
</tr>
<tr>
<td></td>
<td>schnellstmöglich</td>
<td></td>
<td>6-7 Tagen Blindpassage,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Originalmaterial: -70 °C,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sens: hoch</td>
</tr>
<tr>
<td>EM (Nachweis von</td>
<td></td>
<td></td>
<td>nicht etabliert</td>
</tr>
<tr>
<td>Viruspartikeln)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antigen-Nachweis im EIA</td>
<td>Abstrich/Aspirat: NA, RA</td>
<td>zellarmes Material EIA,</td>
<td>Testdauer: 15-150 min</td>
</tr>
<tr>
<td>mit mAk (Kit) bzw. im</td>
<td>, BAL</td>
<td>zellreiches Material: IFT</td>
<td></td>
</tr>
<tr>
<td>IFT mit mAk</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| RT-PCR | Abstrich/Aspirat: NA, RA | zur RSV-Subtypen-Charakterisierung | Huber
| |, BAL | für epidemiologische Studien,|
| | | Sens: ca. 100 Genomäquivalente/ml|

Nachweis spezifischer Antikörper

<table>
<thead>
<tr>
<th>Methode</th>
<th>Probenmaterial/Transport</th>
<th>Ergebnis/Einheit</th>
<th>Anmerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT</td>
<td>Blut/Serum</td>
<td>Titeranstieg,</td>
<td>nicht etabliert</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Serokonversion</td>
<td></td>
</tr>
<tr>
<td>ELISA</td>
<td>Blut/Serum</td>
<td>IgA-Antikörper bei akuten</td>
<td>IgA-Antikörper bei akuten</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Infektionen häufig, IgM-Antikörper</td>
<td>Infektionen häufig, IgM-Antikörper</td>
</tr>
<tr>
<td></td>
<td></td>
<td>selten. Vor allem kürzliche Infektion</td>
<td>selten. Vor allem kürzliche Infektion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>>1:2048 (IgG), 1:256 (IgA)</td>
<td>>1:2048 (IgG), 1:256 (IgA)</td>
</tr>
<tr>
<td>IFT</td>
<td>Serum</td>
<td>Titer</td>
<td>kürzliche Infektion >1:160 (IgG)</td>
</tr>
<tr>
<td>KBR</td>
<td>Blut, Serum</td>
<td>Titeranstieg,</td>
<td>Vor allem kürzliche Infektion >1:64</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Serokonversion</td>
<td>Sens: gering; Spez: gering</td>
</tr>
</tbody>
</table>

7.33.4 Untersuchungsindekationen und Materialien

Methoden für den direkten Virusnachweis (Virusisolierung, Antigen- und Nukleinsäurenachweis) sind dem Antikörnernachweis diagnostisch weit überlegen und die Methoden der Wahl. Nasenrachen-
sekre/Absaugmaterial eignet sich wesentlich besser als Abstrichmaterial. Für die PCR ist auch BAL geeignet.
Die Virusisolierung kann vor allem bei zellarem Material die empfindlichsste Methode sein.
Untersuchungsmaterial sollte frühzeitig abgenommen und möglichst schnell gekühlt (4 °C) ins Labor transportiert werden. Sputum ist zum Virusnachweis ungeeignet.
Notfallparameter insbesondere bei Frühgeborenen (auch bei Neugeborenen und Kleinkindern bis 2 ¹/₂ Jahre).
7.33.5 Virologische Interpretationen und klinische Bedeutung

<table>
<thead>
<tr>
<th>Akute Infektion</th>
<th>IgG-ELISA</th>
<th>IgA-ELISA</th>
<th>KBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verdacht auf kürzliche Infektion</td>
<td>>1:2048</td>
<td>>1:256</td>
<td>>1:64</td>
</tr>
</tbody>
</table>

7.33.6 Besondere diagnostische Probleme

Antigen-/Virusnachweis:
Nasensekret/Absaugmaterial muss schnell transportiert und rasch verarbeitet werden. RSV ist im Transportmedium, z. B. Hanks+ 0,5% Gelatine, für einige Stunden bei 4 °C haltbar. Für längere Lagerung Originalmaterial bei -70 °C lagern.

Antikörperdiagnostik:
Differenzialdiagnostisch ist an Metapneumovirus-Infektion zu denken.

7.33.7 Meldepflicht
keine

7.34 Rhinoviren (HRV) (Familie: Picornaviridae - Enterovirus)

7.34.1 Erreger und Infektion

7.34.1.1 Virus

Bearbeiter*in: Dr. Gentner-Göbel, Eva
Freigabe: Prof. Dr. Stamminger, Thomas
ID: 22223
Revision: 09/12/2022
Seite: 134 von 373

Ausgedruckt ist das Dokument eine unkontrollierte Kopie und unterliegt nicht dem Änderungsdienst
7.34.1.2 Epidemiologie

Rhinovirusinfektionen kommen in den gemäßigten Klimazonen während des ganzen Jahres vor, mit Häufung im Spätsommer und Frühherbst. Die Übertragung erfolgt vor allem durch Schmierinfektion über kontaminierte Hände und Gegenstände, aber auch Tröpfcheninfektion ist möglich.

7.34.1.3 Infektionsformen

7.34.1.4 Inkubationszeit

Die Inkubationszeit beträgt 1–4 Tage.

7.34.2 Symptome/Erkrankungen

Im Vordergrund stehen Rhinitis, Rhinopharyngitis, Tracheobronchitis; bei Säuglingen, Kindern und Immunsupprimierten sind auch Pneumonien möglich; Otitis media. Verschlechterung chronischer Bronchitiden und Auslösung von Asthmaanfällen. Krankheitsdauer ca. 7 Tage.

7.34.3 Diagnostische Methoden

Nachweis von Viren oder Virusbestandteilen (Antigen/Nukleinsäure)

<table>
<thead>
<tr>
<th>Methode</th>
<th>Probenmaterial/Transport</th>
<th>Ergebnis/Einheit</th>
<th>Anmerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>EM (Nachweis von Viruspartikeln)</td>
<td></td>
<td></td>
<td>nicht verfügbar</td>
</tr>
<tr>
<td>Nachweis viraler Antigene</td>
<td></td>
<td></td>
<td>nicht verfügbar</td>
</tr>
<tr>
<td>RT-PCR</td>
<td>siehe oben</td>
<td>pos/neg</td>
<td>zurzeit beste diagnostische Möglichkeit, spezifische Amplifikation von Rhinoviren oder Miterfassung über gruppen-spezifische Entovirus-PCR.</td>
</tr>
</tbody>
</table>

Nachweis spezifischer Antikörper

<table>
<thead>
<tr>
<th>Methode</th>
<th>Probenmaterial/Transport</th>
<th>Ergebnis/Einheit</th>
<th>Anmerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT mit Plaquereduktionstest in Zellkultur</td>
<td>Titer</td>
<td>sehr aufwändig, für spezielle Fragestellungen geeignet</td>
<td></td>
</tr>
<tr>
<td>ELISA u.a. Ak-Tests</td>
<td></td>
<td></td>
<td>nicht verfügbar</td>
</tr>
</tbody>
</table>

Antigennachweis direkt aus dem Untersuchungsmaterial

Bearbeiter*in: Dr. Gentner-Göbel, Eva
Freigebender*in: Prof. Dr. Stamminger, Thomas
ID: 22223
Revision: 09/12.09.2022
Seite: 135 von 373
Nukleinsäurenachweis direkt aus dem Untersuchungsmaterial

Der HRV-Nachweis in Atemwegssekreten mit der RT-PCR ist möglich und heute zunehmend die Methode der Wahl, da er schneller (<3 Stunden) und sensitiver als die Zellkultur ist. Mit der Multiplex-RT-PCR ist heute der gleichzeitige Nachweis von bis zu 20 respiratorischen Viren in einer Reaktion möglich. Der Test sollte auch auf quantitative Virusnachweise ausgelegt sein, was für die Einschätzung der pathogenetischen Relevanz besonders wichtig ist. RT-PCRs sind teilweise kommerziell verfügbar.

Nachweis von Virus-Antigenen nach Kurzkultur bzw. Virusisolierung

Antikörpernachweis

Der Neutralisationstest ist für besondere Fragestellungen möglich, er ist sehr aufwändig und ohne praktische Bedeutung. Andere Antikörpernachweise sind nicht verfügbar (die vielen Serotypen, neuauftretende Varianten und das Fehlen eines gemeinsamen Antigens begrenzen die Anwendung einer Serologie auf Forschungslaboren).

Die HRV-Serologie ist für die Diagnose akuter respiratorischer Erkrankung bedeutungslos und nur für epidemiologische Studien von Interesse. Die Bewertung positiver Ergebnisse (vor allem qualitativer Ergebnisse) ist manchmal schwierig, da HRV oft auch bei asymptomatischen Personen zu finden sind und weil es, vor allem bei Kindern eine hohe Rate von Koinfektionen mit anderen respiratorischen Viren gibt (z. B. 10% bei Pneumonien!).

Stufendiagnostik

Der Nachweis einer HRV-Infektion der oberen Atemwege ist nicht notwendig (Diagnose erfolgt aufgrund der Klinik und Symptome)!

Da für Rhinoviren kein Schnelltest für den Antigendirektachweis zur Verfügung steht und sich nicht alle Rhinoviren isolieren lassen, sollte bei schweren Krankheitsverläufen unterer Atemwege ggf. eine Multiplex RT-PCR eingesetzt werden und nicht die monospezifische RT-PCR.

7.34.4 Untersuchungsindikationen und Materialien

- Akute Infektionen: Tracheobronchitiden und Pneumonien insbesondere bei Säuglingen, Kleinkindern und Immunsuppressierten.
- Eine virologisch-diagnostische Abklärung ist in Erwägung zu ziehen bei Verschlechterung chronischer Bronchitiden und bei Asthmaanfällen.
- Untersuchungsmaterial: bei Säuglingen und Kleinkindern abgesaugtes Nasenschleimsekret, bei Erwachsenen Nasenspülflüssigkeit, Nasentupferproben, Mittelohrflüssigkeit, bei Todesfällen Trachealsekret und Lungengewebe in Viocult oder steriler NaCl; rascher, vorzugsweise gekühlter Transport (4 °C).
- Untersuchungsmethode: Direkter Virusnachweis mittels Virusisolierung oder Genamplifikation (RT-PCR)
- Isolate werden über die Bestimmung der Säurelabilität (Ausbleiben des zytopathischen Effektes nach Vorinkubation des Isolates bei pH 3) als Rhinoviren identifiziert. Die Serotypisierung des säurelabilen Isolates erfolgt mittels Neutralisationstest durch typspezifische Antiseren.
7.34.5 Virologische Interpretationen und klinische Bedeutung
Nachweis des Virus beweist die akute Infektion.

7.34.6 Besondere diagnostische Probleme
Kreuzreaktionen zwischen einzelnen Serotypen, Zunahme von nicht typisierbaren Virusisolaten.

7.34.7 Meldepflicht
keine

7.35 Rötelnvirus (Familie: Togaviridae - Rubivirus)

7.35.1 Erreger und Infektion

7.35.1.1 Virus
Das Rötelnvirus ist ein wenig umweltresistentes, genetisch stabiles RNA-Virus, welches ein eigenes Genus der Togaviridae darstellt. Die Lipidhülle des sphärischen Viruspartikels (50–70 nm) enthält ein isometrisches Nukleokapsid (Core: 30 nm) mit einem 10 kb langen RNA-Einzelstrang positiver Polarität. Strukturproteine sind außer dem Core-Protein (C) die Glykoproteine E1 und E2 der Virushülle. E1 besitzt Hämagglutininaktivität. Es bildet im reifen Virion Heterodimere mit E2 und ist in dieser Konfiguration Ziel neutralisierender Antikörper, deren Nachweis gut mit dem hämagglutinationshemmender Antikörper korreliert.

7.35.1.2 Epidemiologie

7.35.1.3 Infektionsformen

7.35.1.4 Inkubationszeit

Die Inkubationszeit beträgt 10-21 Tage.

7.35.2 Symptome/Erkrankungen

7.35.3 Diagnostische Methoden

Nachweis von Viren oder Virusbestandteilen (Antigen/Nukleinsäure)

<table>
<thead>
<tr>
<th>Methode</th>
<th>Probenmaterial/Transport</th>
<th>Ergebnis/Einheit</th>
<th>Anmerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virusisolierung</td>
<td>Chorionzotten, Fruchtwasser, fetales EDTA-Blut, RA, Urin, EDTA-Blut (Vollblut), Liquor, Linsenmaterial, fetales Gewebe. Transport: schnell, 4°C</td>
<td>pos/neg Titer: TCID50</td>
<td>Speziallabor Testdauer: 8-12 Tage</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bearbeiter*in</th>
<th>Freigaber*in</th>
<th>ID</th>
<th>Revision</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Gentner-Göbel, Eva</td>
<td>Prof. Dr. Stammlinger, Thomas</td>
<td>22223</td>
<td>005/12.09.2022</td>
<td>128 von 173</td>
</tr>
</tbody>
</table>
Nachweis spezifischer Antikörper

<table>
<thead>
<tr>
<th>Methode</th>
<th>Probenmaterial</th>
<th>Transport</th>
<th>Ergebnis/Einheit</th>
<th>Anmerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutralisationstest (NT)</td>
<td>Serum (Liquor)</td>
<td></td>
<td>Titer</td>
<td>Speziallabor Testdauer: ca. 6 Tage</td>
</tr>
<tr>
<td>ELISA: IgG-Antikörper</td>
<td>Serum (Liquor)</td>
<td></td>
<td>IgG: IU/ml</td>
<td>>7-15 IU/ml: Basisimmunität</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>>35 IU/ml: Immunität</td>
</tr>
<tr>
<td>IgM-Antikörper</td>
<td>Serum (Liquor)</td>
<td></td>
<td>IgM: Index</td>
<td>IgM-Ak sind Hinweis auf akute</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(qualitativ)</td>
<td>Infektion (Problem: lang</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>persistierende IgM-Antikörper)</td>
</tr>
<tr>
<td>IgG-Aviditätstest</td>
<td>Serum</td>
<td></td>
<td>Index, Prozent</td>
<td>niedrig ariv = akute Infektion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>bzw. kürzliche Impfung in den</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>letzten 3 Monaten</td>
</tr>
<tr>
<td>Immunoblot (WB)</td>
<td>Serum</td>
<td></td>
<td>viruspezifische</td>
<td>Ez-IgG-Antikörper vorhanden =</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Banden</td>
<td>Immunität;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ez-Ak nicht vorhanden =</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>wahrscheinlich frische Infektion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>oder kürzliche Impfung</td>
</tr>
<tr>
<td>HHT (IgM-Antikörpernachweis nach UZ-Dichtegradient)</td>
<td>Serum (Liquor)</td>
<td></td>
<td>Titer</td>
<td>Standardtest: >32 = Immunität,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td><32 = Bestätigung durch andere</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Methoden erforderlich (ELISA, HIG)</td>
</tr>
<tr>
<td>HIG</td>
<td>Serum (Liquor)</td>
<td></td>
<td>Durchmesser/mm</td>
<td>Bestätigung niedriger HHT-Titer</td>
</tr>
</tbody>
</table>

7.35.4 Untersuchungsdikationen und Materialien

Immunitätskontrolle:
- Nachweis schützender Antikörper vor Eintritt einer Schwangerschaft, damit ggf. eine Rötelnimpfung rechtzeitig durchgeführt werden kann.

Infektion in der Schwangerschaft:
- Bei Rötelnkontakt oder Verdacht einer Rötelninfektion bis zur 17. SSW sollten auch beim Vorliegen von älteren Laborergebnissen je nach Situation als Stufendiagnostik der HHT und die Röteln-IgM Bestimmung durchgeführt werden und ggf. Zusatztests wie Immunoblot und IgG-Aviditätbestimmung angeschlossen werden, um eine Primärinfektion nachzuweisen oder auszuschließen, oder auch eine Reinfektion zu dokumentieren. Eine zweite Blutprobe sollte im Abstand von 1-2 Wochen entnommen und untersucht werden.
- Pränatale Rötelnidiagnostik beim Fötus erfolgt bei nachgewiesenen akuten Erstinfektionen und bei Reinfektion bis zur 18. SSW, bei serologisch nicht abklärbarer Ursache der pos. Röteln-IgM-Befunde und bei sonographischen Auffälligkeiten:
 - Chorionzottenbiopsie (11.-18. SSW) sowie Fruchtwasser und Fetalblut (18.-22. SSW) werden mittels RT-PCR auf Röteln-Virus-RNA untersucht.
Ab der 22. SSW können auch rötelspezifische IgM-Antikörper im Fetalblut nachgewiesen werden (Anti-μ-capture-Test).

- Die Diagnostik bei Neugeborenen und Säuglingen zum Nachweis einer konnatalen Infektion erfolgt durch:
 - Bestimmung rötelspezifischer IgM-Antikörper (95% positiv bei Rötelnembryopathie, aber auch nachweisbar bei asymptomatisch infizierten)

7.35.5 Virologische Interpretationen und klinische Bedeutung

Wenn keine Schwangerschaft vorliegt, unproblematisch aufgrund der Klinik und des positiven IgM-Antikörper-Nachweises.

Bei Infektion/Infektionsverdacht während der Schwangerschaft:

- **Primärinfektion:** Klinik, 2 methodisch verschiedene Röteln-IgM-Tests positiv, Nachweis von niedrig-aviden IgG-Ak, keine E2-Konformationsantikörper im Western Blot (bis 3 Monate nach Infektion)

- **Immunität:**
 - HHT ≥1:32, Röteln ELISA IgG >35 IU/ml
 - HHT 1:8 oder 1:16 und Röteln IgG ELISA >7-10 IU/ml (Basisimmunität mit unsicherem Schutz vor Erkrankung)
 - H1G ab 9 mm positiv
 - Röteln-E2-IgG Konformationsantikörper nachweisbar
 - Hoch-avid rötelspezifische IgG-Antikörper nachweisbar
7.35.6 Besondere diagnostische Probleme

- Falsch positive Röteln-IgM-Befunde durch polyklonale Stimulierung insbesondere bei EBV- oder Parvovirus B19-Infektion möglich.
- Akzidenteller Nachweis rötelspezifischer IgM-Antikörper in der Schwangerschaftsvorsorge ohne Symptome kann Hinweis auf lang persistierende Ak oder bei Exposition Folge einer Reinfektion sein.
- Bei pränataler invasiver Röteldiagnostik sollten die Hinweise zu Zeitpunkt der Abnahme und Art der fetalen Probe beachtet werden.
- Bei Verdacht auf frische Infektion unbedingt Seren im Abstand von 1-2 Wochen untersuchen!
- Die KBR ist in der Röteldiagnostik obsolet.
- Bei der Pränataldiagnostik: Vorgaben des Referenzlabors beachten.

7.35.7 Meldepflicht

7.36 Rotaviren (Familie: Reoviridae)

7.36.1 Erreger und Infektion

7.36.1.1 Virus

7.36.1.2 Epidemiologie

7.36.1.3 Infektionsformen

Rotaviren infizieren die apikalen Enterozyten der Dünndarmzotten. Der Infektionsverlauf ist ab dem 3. Lebensjahr überwiegend asymptomatisch bis leicht. Persistenz ist nicht bekannt; Reinfektionen sind jedoch häufig, und Ausbrüche bei Erwachsenen wurden beschrieben.

7.36.1.4 Inkubationszeit

Die Inkubationszeit beträgt 1–3 Tage.

7.36.2 Symptome/Erkrankungen

7.36.3 Diagnostische Methoden

Nachweis von Viren oder Virusbestandteilen (Antigen/Nukleinsäure)

<table>
<thead>
<tr>
<th>Methode</th>
<th>Probenmaterial/Transport</th>
<th>Ergebnis/Einheit</th>
<th>Anmerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nachweis von Viruspartikeln, ggf. nach UZ-Anreicherung, EM</td>
<td>Stuhl</td>
<td>76nm große Ikosaedrische Partikel</td>
<td>„negative staining“; schnelle Methode (wenige Stunden)</td>
</tr>
<tr>
<td>Nachweis viraler Nukleinsäure, RNA-Elektrophores PCT-Sequenzierung</td>
<td>Stuhl</td>
<td>Elektrophoretotyp Genotyp</td>
<td>Speziallabor</td>
</tr>
</tbody>
</table>

Nachweis spezifischer Antikörper

<table>
<thead>
<tr>
<th>Methode</th>
<th>Probenmaterial/Transport</th>
<th>Ergebnis/Einheit</th>
<th>Anmerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT</td>
<td>Stuhl (IgA), Serum</td>
<td>Titer</td>
<td>Speziallabor, Oberflächen-Proteine VP4 und VP7</td>
</tr>
<tr>
<td>Elisa, IFT, Immunoblot (WB)</td>
<td>Serum</td>
<td>pos/neg, Titer</td>
<td>Speziallabor</td>
</tr>
<tr>
<td>HHT, KBR</td>
<td>Serum</td>
<td>Titer</td>
<td>Speziallabor</td>
</tr>
</tbody>
</table>
7.36.4 Untersuchungsindikationen und Materialien

- Rotaviren sind eine der Hauptursachen schwer verlaufender Enteritiden bei Säuglingen und Kleinkindern und spielen eine Rolle als nosokomiale Infekionserreger auf Neugeborenen- und Säuglingssstationen.
- Eine Abgrenzung zu bakteriellen Infektionen ist erforderlich. Da Rotaviruspartikel in hoher Konzentration im Stuhl ausgeschieden werden, ist der direkte Erregernachweis die diagnostische Strategie der Wahl.
- Schnelldiagnostik erfolgt im Stuhl mittels EIA oder seltener EM.

7.36.5 Virologische Interpretationen und klinische Bedeutung

Infektionen mit verschiedenen Serotypen können aufeinanderfolgende Erkrankungen hervorrufen. Der Rotavirusnachweis kann bei älteren Kindern und Erwachsenen ein „Zufallsbefund“ sein, er ist pathognomonisch bei kindlicher Diarrhoe.

7.36.6 Besondere diagnostische Probleme

7.36.7 Meldepflicht

Meldepflicht nach §7 ifSG namentlich an das Gesundheitsamt

7.37 Sandfliegen-Fieber-Viren (Familie: Bunyaviridae - Phlebovirus)

7.37.1 Erreger und Infektion

7.37.1.1 Virus

Sandfliegen-Fieber wird durch drei eng verwandte Viren (Serotypen) hervorgerufen. Dies sind das Toskanavirus, das Sizilianische und das Neapolitanische Virus. Thermolabile sphaerische Partikel (90–110 nm). In einer Lipidhülle mit Glykoproteinspikes liegen drei Segmente Negativstrang-RNA (L; M; S; Länge 6,5; 3,5; 1,7 kb) jeweils von einem helikalen Kapsid umgeben. Die Hülle besitzt zwei vom RNA-M-Segment kodierte Glykoproteine (G1 und G2). Als Heterodimere besitzen sie Hämagglutininaktivität. Das S-Segment kodiert für das Kapsidprotein und ein Nichtkapsidprotein, L für die Polymerase.

7.37.1.2 Epidemiologie

7.37.1.3 Infektionsformen

7.37.1.4 Inkubationszeit
Die Inkubationszeit beträgt 3–6 Tage.

7.37.2 Symptome/Erkrankungen
Klinisch manifeste Fälle beginnen grippeartig mit akutem hohem Fieber, starken Kopfschmerzen und Meningismus. Auch die voll ausgeprägte Meningitis oder Meningoenzephalitis bildet sich im Allgemeinen ohne bleibende Folgen zurück. Tödliche Verläufe sind nicht bekannt.

7.37.3 Diagnostische Methoden
Nachweis von Viren oder Virusbestandteilen (Antigen/Nukleinsäure)

<table>
<thead>
<tr>
<th>Methode</th>
<th>Probenmaterial/Transport</th>
<th>Ergebnis/Einheit</th>
<th>Anmerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virusisolierung</td>
<td>Liquor früh nach Erkrankung, express</td>
<td>pos/neg</td>
<td>Speziallabor Testdauer: 3–8 Tage</td>
</tr>
<tr>
<td>Nachweis von Viruspartikeln</td>
<td></td>
<td></td>
<td>nicht etabliert</td>
</tr>
<tr>
<td>Nachweis viraler Antigene</td>
<td></td>
<td></td>
<td>nicht etabliert</td>
</tr>
<tr>
<td>Nachweis viraler Nukleinsäure, RT-PCR</td>
<td>Serum/Liquor</td>
<td>pos/neg</td>
<td>Speziallabor: nur in Ausnahmefällen indiziert</td>
</tr>
</tbody>
</table>

Nachweis spezifischer Antikörper

<table>
<thead>
<tr>
<th>Methode</th>
<th>Probenmaterial/Transport</th>
<th>Ergebnis/Einheit</th>
<th>Anmerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT</td>
<td></td>
<td></td>
<td>nicht vollständig typenspezifisch (Kreuzreaktionen)</td>
</tr>
<tr>
<td>IFT, IgG/IgM-Antikörper, Immunoblot (WB)</td>
<td>Serum/Liquor</td>
<td>Titer</td>
<td>Kreuzreaktion der Serotypen, keine kommerziellen Tests</td>
</tr>
<tr>
<td>HHT</td>
<td></td>
<td></td>
<td>keine kommerziellen Tests verfügbar</td>
</tr>
</tbody>
</table>

7.37.4 Untersuchungsindikationen und Materialien

7.37.5 Virologische Interpretationen und klinische Bedeutung
Antikörper finden sich bei Südeuropäern häufiger; es besteht aber auch 1% Antikörperlprévalenz in Bayern. Antikörper, z. B. nach Mittelmeeraufenthalt, weisen daher lediglich auf eine ggf. inapparent durchgemachte Infektion hin. Sie lassen sich etwa 5–8 Tage nach Krankheitsbeginn nachweisen. Frische Infektionen sind nur durch Erregeranamnese, mindestens 24-fachen Titeranstieg bzw. Serokonversion oder IgM-Nachweis zu belegen.
7.37.6 Besondere diagnostische Probleme
Differentialdiagnostisch sind andere fiebrerhafte Viruserkrankungen, insbesondere andere Virus-Meningoenzephalitiden, auszuschließen.

7.37.7 Meldepflicht
keine

7.38 Sapovirus (Familie: Caliciviridae)

7.38.1 Erreger und Infektion

7.38.1.1 Virus
Sapoviren gehören zur Familie der Caliciviridae. Es sind unbehüllte Plus-Einzelstrang-RNA-Viren (ss(+)-RNA) mit einer Größe von 7,3-8,3 kb, die weltweit verbreitet sind und hauptsächlich durch fäkal-oroale Schmierinfektionen, Tröpfcheninfektion oder direkten Kontakt übertragen werden. Vor allem bei Kleinkindern unter 5 Jahren führt eine Infektion mit dem Sapovirus zu einer infektiösen Gastroenteritis.

Das Kaspid hat eine Ikosaedrische Form und misst einen Durchmesser von 30-38 nm.

7.38.1.2 Epidemiologie

Sapoviren sind hoch infektiös und haben eine hohe Fähigkeit, sich an verschiedenste Umweltbedingungen anzupassen. Ebenfalls besitzen sie die Fähigkeit der Antigendrift und des Antigenshifts.

7.38.1.3 Infektionsformen
Übertragungsformen der Sapovirus-Infektion sind hauptsächlich fäkal-oroale Schmierinfektionen, aber auch Tröpfcheninfektion durch die orale Aufnahme virushaltiger Tröpfchen aus Aerosolen von Erbrochenem, direkter Kontakt einer infektiösen Person oder einer kontaminierten Oberfläche sowie durch den Verzehr kontaminierten Lebensmittels.

<table>
<thead>
<tr>
<th>Bearbeiter*in</th>
<th>Freigabe*in</th>
<th>ID</th>
<th>Revision</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Gentner-Göbel, Eva</td>
<td>Prof.Dr. Stamminger, Thomas</td>
<td>22223</td>
<td>09/12.09.2022</td>
<td>145 von 173</td>
</tr>
</tbody>
</table>
Nach der oralen Aufnahme von Viruskapseln erfolgt die Vermehrung des Virus in Darmepithelzellen und führt anschließend zur Virusausscheidung im Stuhl und Erbrochenem.

7.38.2 Symptome/Erkrankungen
Nach einer Inkubationszeit von 2-4 Tagen treten die ersten Symptome auf. Diese sind sehr ähnlich zu denen einer Norovirus-Infektion.

Die am Häufigsten auftretenden Symptome sind Übelkeit mit Erbrechen und Durchfall. Es können jedoch weitere Symptome auftreten wie:
- Schüttelfrost
- Übelkeit ohne Erbrechen
- Kopfschmerzen
- Bauchkrämpfe
- Muskelschmerzen

Selten:
- Fieber

Eine Sapovirus-Infektion kann auch asymptomatisch verlaufen, wobei der Infizierte jedoch trotzdem auf dem üblichen fäkal-oralen Weg das Virus verbreiten kann.

Therapie:
Es ist keine Sapovirus-spezifische antivirale Therapie vorhanden. Es wird somit nur symptomatisch, wie eine ausreichende Flüssigkeitszufuhr, behandelt.

7.38.3 Diagnostische Methoden
Erregerdirektanzeigeweis mittels PCR.

7.38.4 Untersuchungsinhalte und Materialien
Virusnachweis mittels RT-PCR aus Stuhl.

7.38.5 Virologische Interpretationen und klinische Bedeutung
Sapoviren führen zu einer infektiösen Gastroenteritis, wobei die Inzidenz geringer ist, als bei einer Norovirus-Infektion.
Eine Infektion bei Kleinkindern unter 5 Jahren führt meist zu einem schwereren klinischen Verlauf verglichen mit älteren infizierten Kindern.
Erwachsene können sich ebenfalls infizieren, zeigen jedoch meist nur einen leichten Verlauf.

7.38.6 Besondere diagnostische Probleme
keine

7.38.7 Meldepflicht
In Deutschland besteht keine Meldepflicht für Sapovirus-Infektionen.
7.39 Tollwutvirus (Familie: Rhabdoviridae - Lyssavirus)

7.39.1 Erreger und Infektion

7.39.1.1 Virus

7.39.1.2 Epidemiologie

7.39.1.3 Infektionsformen

7.39.1.4 Inkubationszeit

Die Inkubationszeit beträgt überwiegend zwischen 3 Wochen und 3 Monaten; selten wenige Tage bis zu 6 Jahre.

7.39.2 Symptome/Erkrankungen

7.39.3 Diagnostische Methoden

Nachweis von Viren oder Virusbestandteilen (Antigen/Nukleinsäure)

<table>
<thead>
<tr>
<th>Methode</th>
<th>Probenmaterial/Transport</th>
<th>Ergebnis/Einheit</th>
<th>Anmerkungen</th>
</tr>
</thead>
</table>

Nachweis spezifischer Antikörper

<table>
<thead>
<tr>
<th>Methode</th>
<th>Probenmaterial/Transport</th>
<th>Ergebnis/Einheit</th>
<th>Anmerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutralisation der Infektiosität (Rapid fluorescent focus inhibition test (RFFIT))</td>
<td>Serum, evtl. Liquor ohne Zusätze</td>
<td>Titer oder Angabe in U/ml</td>
<td>vorgeschriebener Test zur Immunitätsbestimmung, >0,5 U/ml Serum (WHO-Standardserum). Test zur Sicherung der Diagnose. Testdauer: ca. 3 Tage</td>
</tr>
<tr>
<td>ELISA IgG/IgM-Ak, Ak gegen Gesamtvirus, virales Glykoprotein oder Nukleokapsidprotein, Immunoblot (WB)</td>
<td>Serum</td>
<td>Titer</td>
<td>Speziallabor: ggf. zur Impfkontrolle, zur Sicherung der Diagnose. Neg. Ergebnis kein Ausschlusskriterium. Testdauer: 1 h – 1 Tag</td>
</tr>
</tbody>
</table>

7.39.4 Untersuchungsindikationen und Materialien

Immunitätsbestimmungen

<table>
<thead>
<tr>
<th>Bearbeiter*in</th>
<th>Freigabe*in</th>
<th>ID</th>
<th>Revision</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Gentner-Göbel, Eva</td>
<td>Prof. Dr. Stamminger, Thomas</td>
<td>22223</td>
<td>09/12/2022</td>
<td>148 von 173</td>
</tr>
</tbody>
</table>
Präanalytik-Handbuch ANL-5.5.1-2 OE

- Prüfung der Immunität ist nur ausnahmsweise indiziert (selten nach postexpositioneller Impfung; ansonsten z. B. begonnene Impfung im Ausland, verspäteter Impfbeginn)
- Immunitätskontrolle vor Boosterimpfung (regelmäßige Kontrolle bei fortwährendem Expositionsrisiko; z. B. Laborpersonal).

Diagnostik bei Tollwutverdacht (nur nach Erkrankungsbeginn!)
- Vor der Probenentnahme immer beim Speziallabor anfragen.
- Untersuchungsmaterialien: Serum ohne Zusatz, Speichelproben, Korneaabstrich, Hautbiopsien.
- Fraglich virushaltiges Material (alles außer Serum) unter höchsten Sicherheitskautelen entnehmen.
- Ständig gekühlt halten (cave: Autolyse) und unter höchsten Sicherheitsmaßnahmen versenden.
- RFFIT, zusätzlich als Schnelltest ELISA; Antikörperbildung erst nach Krankheitsbeginn, häufig nur mit niedrigen Titern.
- Isolierungsversuch in der Maus und/oder in Zellkultur: negativer Befund kein Ausschlusskriterium.
- IFT: negativer Befund kein Ausschlusskriterium.
- PCR ist in Speziallaboratorien etabliert.

Post-mortem-Diagnostik
Gehirngewebe, insbesondere Ammonshorn, MIT oder/und RTCIT, IFT oder ICH. Positiver bzw. negativer Befund ist beweisend für Tollwut bzw. für Ausschluss der Tollwut. Histopathologie (Negri-Körperchen) bei fraglichen neurologischen Erkrankungen. PCR ist auch indiziert, wenn die Diagnose gesichert werden soll, aber eine Sektion verweigert wird.

Aufläuter der Infektionsquelle
- Zuordnung des Virusstammes zu einer Tierspezies und/oder einem geographischen Gebiet; Untersuchung des Virussisolats im IFT mit mAk bzw. PCR
- Differentialdiagnostik anderer neurologischer und psychiatrischer Erkrankungen, evtl. Blut-/Serumuntersuchung im ELISA (ca. 1 h).

7.39.5 Virologische Interpretationen und klinische Bedeutung
- Immunitätsuntersuchung: >0,5 U/ml Serum im RFFIT oder Mausneutralisationstests (MNT) Immunität vorhanden; spätestens 35 Tage nach Beginn des gültigen Impfschemas haben alle Probanden Immunschutz.
- Erkrankungsverdacht (intra vitam):
 - Antikörper- oder Virus-/Antigennachweis positiv: Diagnose Tollwut
 - Antikörper- oder Virus-/Antigennachweis negativ: Tollwut kann nicht ausgeschlossen werden.
- Erkrankungsverdacht (post mortem):
 - Virus-/Antigennachweis positiv: Diagnose Tollwut
 - Virus-/Antigennachweis negativ: keine Tollwut.

7.39.6 Besondere diagnostische Probleme
- Ausschluss der Tollwut (z. B. bei Einweisung in die Psychiatrie wegen Verhaltensstörungen) durch RFFIT oder ELISA ist problematisch.

<table>
<thead>
<tr>
<th>Bearbeiter*in</th>
<th>Freigabe*in</th>
<th>ID</th>
<th>Revision</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Gentner-Göbel, Eva</td>
<td>Prof. Dr. Stamminger, Thomas</td>
<td>22222</td>
<td>09/12.09.2022</td>
<td>149</td>
</tr>
</tbody>
</table>
• Immunitätsnachweis: Mit kommerziell erhältlichen Tests (ELISA) kann keine Aussage über neutralisierende Antikörper getroffen werden; sie können falsch positive und falsch negative Ergebnisse liefern.
• Aussage über Immunität nur durch ELISA oder RFFIT in Speziallaboratorien möglich.
• Fehlinterpretation von quasifluoreszierenden Herden.
• Negri-Körperchen: Vom Pathologen verwendet zur Aufdeckung *intra vitam* nicht erkannter Tollwutfälle; Verwechslung anderer Strukturen mit Negri-Körperchen ist jedoch möglich.
• PCR für Diagnostik nur in Speziallabors etabliert und validiert; Anwendung auch für die epidemiologische Zuordnung von Isolaten.
• Mausneutralisationstests (MNT), HHT und KBR sind in der Diagnostik obsolet.

7.39.7 Meldepflicht
Meldepflicht nach §§6 und 7 IfSG namentlich an das Gesundheitsamt

7.40 Toxoplasmose

7.40.1 Erreger und Infektion
Die Toxoplasmose ist eine, durch Toxoplasma gondii verursachte, Zoonose. Die Vermehrung des Parasiten hat eine sexuelle und eine asexuelle Phase mit verschiedenen Entwicklungsstadien.
7.40.1.1 Epidemiologie
Toxoplasma gondii ist weltweit verbreitet. Es sind drei Hauptgenotypen bekannt, die alle infektiös für den Menschen sind und sich hinsichtlich Diagnostik, Klinik und Therapie nicht wesentlich unterscheiden.

Reservoir sind überwiegend infizierte warmblütige Zwischenwirte wie Schweine, andere Schlachttiere und Geflügel, mit Toxoplasma-Zysten hauptsächlich im Gehirn und in der Muskulatur.

7.40.1.2 Infektionsformen
Für die Infektion des Menschen sind hauptsächlich zwei Infektionswege je nach Entwicklungsstadium möglich:
1. Aufnahme von rohem/ungenügend behandelterm, zystenhaltigem Fleisch bzw. Fleischprodukten
2. Orale Aufnahme von sporulierten Oozyten (z. B. bei Gartenarbeit, Kontakt zu Katzen/-kot)

Sporulierte Oozyten können im Erdboden bis zu 18 Monate, bei 4°C bis zu 5 Jahre, lebensfähig sein und sogar ins Grundwasser gelangen. Der Mensch kann sich also mit kontaminiert der Erde oder kontaminierten Lebensmitteln infizieren.

Seltenere Übertragungsmöglichkeiten sind:
- bei Erstinfektion während der Schwangerschaft eine pränatale Infektion, d.h. eine transplazentare Übertragung auf das Ungeborene.
- eine Parasitenübertragung bei Transplantation oder versehentlicher Inokulation.

7.40.1.3 Inkubationszeit
Als Inkubationszeit wird meist von 2–3 Wochen ausgegangen.

7.40.2 Symptome/Erkrankungen
Es werden 3 Formen der Toxoplasmose bei der klinischen Symptomatik unterschieden:
- die postnatale Toxoplasmose bei Immunkompetenten
- die postnatale Toxoplasmose beim Immunsupprimierten
- die pränatale Toxoplasma-Infektion (meldepflichtig).

Postnatale Toxoplasmose bei Immunkompetenten:
Die akute Toxoplasma-Infektion ist meist asymptomatisch

Postnatale Toxoplasmose beim Immunsupprimierten:

Pränatale Toxoplasma-Infektion:
Eine Erstinfektion der Mutter während der Schwangerschaft kann zu einer pränatalen Toxoplasma-Infektion führen. Bei Nachweis der Infektion vor der Gravidität, ist das Ungeborene durch persistierende Antikörper der Immunkompetenten Mutter geschützt. Tritt die Erstinfektion während der Schwangerschaft auf, so ist das
7.40.3 Diagnostische Methoden:

* Diagnostik bei Immunkompetenten:
Antikörpernachweis aus Serum oder Plasma ist die Methode der Wahl.

* Diagnostik bei Immunsupprimierten:

* Diagnostik bei Schwangeren:
Nachweis von IgG-Antikörpern bei negativem IgM: Es besteht eine Immunität.
Bei positivem IgM-Nachweis muss eine serologische Kontrolle (ca. 14 Tage später) erfolgen.

* Serologische Diagnostik beim Neugeborenen:
Nachweis von IgM-spezifischen Antikörpern im peripheren Blut belegt eine pränatale Infektion. Als Nachweis für eine pränatale Infektion dienen vergleichende Immunblots (Test auf IgG-Antikörper von mütterlichem und kindlichem Serum), und/oder die Persistenz oder Konzentrationsanstieg von IgG-Antikörpern im Serum im postnatalen Verlauf.

* Direkter Erregernachweis:
Der Erregerdirekt Nachweis mittels PCR sichert die Diagnose und ist, wenn möglich, Mittel der Wahl. Der DNA-Nachweis im Blut/Fruchtwasser weist auf eine aktive Toxoplasmeninfektion hin. Bei Nachweis von T. gondii in Geweben werden auch passager inaktive Formen erfasst.

Zur Abklärung einer pränatalen Toxoplasma-Infektion kann die PCR aus Fruchtwasser und Nabelschnurblut erfolgen. Ein positiver Befund beweist die Infektion des Ungeborenen, ein negativer Befund schließt eine Infektion nicht sicher aus.

7.40.4 Untersuchungsindikationen und Materialien

Eine Untersuchung auf Toxoplasma gondii ist vor oder während der Schwangerschaft, bei unklarer Enzephalitis, Meningitis, Myocarditis, interstitielle Pneumonie (Pneumonitis) und bei allen unklaren serologischen Konstellationen sinnvoll.

Für serologische Antikörperteste wird Serum verwendet, für die PCR Blut, Liquor, Fruchtwasser, weiteren Körperflüssigkeiten oder Gewebeproben.
Therapie:

Behandlung von Schwangeren:

Behandlung von Neugeborenen:

Mögliche Therapieoption bei Immunsupprimierten:
Kombinationstherapie mit Trimethoprim/Sulfamethoxazol und Atovaquone.

Eine postnatal erworbene Toxoplasmose bedarf keiner Therapie, sondern nur einer Überwachung.

7.40.5 Virologische Interpretationen und klinische Bedeutung

keine

7.40.6 Besondere diagnostische Probleme

Bei Immunsupprimierten ist die Toxoplasma-Enzephalitis charakterisiert durch eine verzögerte Kontrastmittelauflösung im Randbereich. Differentialdiagnostisch müssen eine PML (JCV), eine Aspergillose des Gehirns, Lymphome oder einen Hirninfarkt in Betracht gezogen werden.

7.40.7 Meldepflicht
Bei konnatalen Infektionen besteht gemäß §7 Abs. 3 IfSG eine nicht-namentliche Meldepflicht an das RKI bei direktem und indirektem Nachweis von Toxoplasma gondii. Diese Meldung muss spätestens 2 Wochen nach erlangter Kenntnis erfolgen.
7.41 Varizella-Zoster-Virus (VZV) (Familie: Herpesviridae Alphaherpesvirinae – Varicellovirus)

7.41.1 Erreger und Infektion

7.41.1.1 Virus

7.41.1.2 Epidemiologie

VZV ist weltweit verbreitet und infiziert >95% der Bevölkerung. Die Durchsuchung beginnt ab dem frühen Kindesalter, sodass bereits über 90% der älteren Kinder seropositiv sind. Die Übertragung erfolgt über ein Rachensekret (Tröpfchen) oder Schleimhautkontakte. Varizellen sind hoch kontagios. Zoster hingegen ist weitaus weniger ansteckend und das Virus wird eher selten über den virushaltigen Bläscheninhalt auf nicht immune Kinder übertragen, mit der Folge einer Windpockenerkrankung.

7.41.1.3 Infektionsformen

Bei der Primärinfektion bleiben die Varizellen selten subklinisch, alle Infektionen führen jedoch zur Viruslatenz in Spinalganglienneuronen und ihren Satellitenzellen. Dort kann es zur endogenen Reaktivierung mit anschließender Auswanderung im Nerven in die Peripherie kommen, mit der Folge einer Zostererkrankung im zugehörigen Dermatom. Die Reaktivierung manifestiert sich bei 15-20% der Bevölkerung, bei Immunsupprimierten zum Teil auch mehrfach. VZV kann bei der seltenen Primärinfektion in der Schwangerschaft prä- und perinatal auf den Fetus oder das Neugeborene übertragen werden (s. u.).
7.41.1.4 Inkubationszeit

Die Inkubationszeit beträgt 10-23 Tage bei der Primärinfektion.

7.41.2 Symptome/Erkrankungen

Lebensbedrohliche generalisierte Infektionen mit Befall innerer Organe können Varizellen insbesondere bei Immunsupprimierten, Schwangeren (Hepatitis, Varizellen-Pneumonie) und Neugeborenen (schwer verlaufende konnatale Varizellen) bei Erkrankungsbeginn der Mutter vor 4 Tagen vor bis 2 Tage nach der Entbindung auslösen. Die pränatale Infektion kann im ersten und zweiten Trimenon zu intrauteriner Varizellen mit Gliedmaßendeformitäten und bleibenden Schädigungen der Haut (fetales oder kongenitales Varizellen-Syndrom), Missbildungen oder zum Abort führen. Dies ist jedoch aufgrund der hohen Rate seropositiver Frauen sehr selten. Das höchste Risiko für den Fetus besteht zwischen der 23. und 20. SSW (ca. 2%).

7.41.3 Diagnostische Methoden

Nachweis von Viren oder Virusbestandteilen

<table>
<thead>
<tr>
<th>Methode</th>
<th>Probenmaterial/Transport</th>
<th>Ergebnis/Einheit</th>
<th>Anmerkungen</th>
<th>Testdauer: 3-8 Tage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virusisolierung</td>
<td>Bläscheninhalt, bioptisches Gewebe BAL.</td>
<td>pos/neg Plaques bzw. CPE</td>
<td>schwierig wegen Zellständigkeit des Virus</td>
<td>ggf. Subkultur,</td>
</tr>
<tr>
<td></td>
<td>Transport: in geringen Volumen eines Zellkulturmediums mit Antibiotikazusatz, möglichst kühl</td>
<td></td>
<td>technisch schwierig</td>
<td></td>
</tr>
<tr>
<td>Resistenztest</td>
<td>Virusisolat</td>
<td>empfindlich/ resistent</td>
<td>Sensitiv, wenn Kontamination ausgeschlossen: Methode der Wahl</td>
<td></td>
</tr>
<tr>
<td>Plaques-Reduktionstest</td>
<td></td>
<td></td>
<td>schnell und zuverlässig, keine Unterscheidung von anderen Herpesviren möglich</td>
<td></td>
</tr>
<tr>
<td>Nachweis viraler Nukleinsäure</td>
<td>Liquor, Bläscheninhalt, Gewebe, BAL</td>
<td>pos/neg</td>
<td>intranukleäre Einschlüsse</td>
<td></td>
</tr>
<tr>
<td>(PCR)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nachweis von Viruspartikeln</td>
<td>wie oben</td>
<td>pos/neg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(EM), Einschlusskörpern</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Histologie/Zytologie)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nachweis viraler Antigene</td>
<td>Histologie/ Zytologie</td>
<td>pos/neg</td>
<td>intranukleäre Einschlüsse</td>
<td></td>
</tr>
<tr>
<td>IFT mit mA k</td>
<td>Paraffinschnitt oder Zellpräparat auf Objektträger</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>zellreicher Bläscheninhalt, Gewebe</td>
<td>pos/neg</td>
<td>sehr materialabhängig Sens: gering</td>
<td></td>
</tr>
</tbody>
</table>

Bearbeiter*in: Dr. Gentner-Göbel, Eva
Freigeber*in: Prof. Dr. Stamminger, Thomas
ID: 22223
Revision: 09/12/09, 2022
Seite: 155 von 373
Nachweis spezifischer Antikörper

<table>
<thead>
<tr>
<th>Methode</th>
<th>Probenmaterial/Transport</th>
<th>Ergebnis/Einheit</th>
<th>Anmerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutralisation der Infektiosität (NT)</td>
<td>Serum</td>
<td>Titer</td>
<td>keine Routinemethode sehr schwierig</td>
</tr>
<tr>
<td>ELISA, IFT, Ig-Klassendifferenzierung</td>
<td>Serum</td>
<td>Titer, mU/ml</td>
<td>einfach in der Durchführung sensit</td>
</tr>
<tr>
<td>KBR</td>
<td>Serum</td>
<td>Titer</td>
<td>Serokonversion bei Primärinfektion und bei Zoster</td>
</tr>
</tbody>
</table>

7.41.4 Untersuchungsindikationen und Materialien

Varizellen und Zoster werden meist klinisch diagnostiziert. Vor allem bei atypischem Krankheitsverlauf (z. B. Zoster oticus, Fazialisparese) oder in der Schwangerschaft sind Laboruntersuchungen wichtig. Dabei sind direkte Erregernachweisverfahren, wie die PCR, zu bevorzugen. Bei der Erregerisolierung ist die ausgeprägte Zellständigkeit des Virus zu beachten.

Antikörperbestimmungen sind vor allem bei der Klärung der Immunität (Anti-VZV-IgG) von Bedeutung können aber auch zu Bestätigung bei Verdacht auf Varizellen (Serokonversion, Anti-VZV-IgM/IgA) und Zoster (Anstieg der VZV-KBR und von Anti-VZV-IgG, Anti-VZV-IgA und zum Teil erneut VZV-IgM-Nachweis) eingesetzt werden.

7.41.5 Virologische Interpretationen und klinische Bedeutung

7.41.6 Besondere diagnostische Probleme

„Auffällige“ serologische Befunde (hohe IgA-Titer, mitunter IgM) ohne pathognomonischen Wert kommen bei verschiedenen Grunderkrankungen vor.

Bei klinischem Verdacht auf generalisierte VZV-Infektion bzw. Enzephalitis bestätigt eine positive PCR die Indikation der bereits begonnenen antiviralen Chemotherapie; ein negatives Ergebnis sollte jedoch nicht das einzige Entscheidungskriterium für den Abbruch der Chemotherapie sein.

Die VZV-KBR ist zur Beurteilung der Immunität ungeeignet, da niedrige Antikörpertiter und Langzeitimmunität nicht erfasst werden.

7.41.7 Meldepflicht

Namentlich an das Gesundheitsamt, auch ohne Kenntnis, ob Zoster oder Varizellen vorliegen.
7.4.2 West-Nil-Virus (WNV) (Familie: Flaviviridae)

7.4.2.1 Erreger und Infektion

7.4.2.1.2 Virus

Das West-Nil-Virus gehört zur Familie der Flaviviren. Diese sind behüllte Viren, die ein ca. 25 nm großes, ikosaedrisches Kapsid haben, in dem sich eine Kopie des viralen Genoms, bestehend aus einer ca. 11.000 Nukleotid langen Plusstrang-RNA, befindet.

Das West-Nil-Virus wird in 2 Subtypen unterteilt. Typ 1 ist weit verbreitet und war in den letzten Jahren verantwortlich für schwere Ausbrüche, wohingegen Typ 2 sich hauptsächlich auf Afrika beschränkt.

Das West-Nil-Fieber ist eine endemisch Zoonose die in verschiedenen Regionen der Welt vorkommt.

7.4.2.1.2 Epidemiologie

7.4.2.1.3 Infektionsformen

Die Ausbrüche von an West-Nil-Virus-infizierten stehen im Zusammenhang mit günstigen Bedingungen für die Vektoren. In Deutschland ist für sie die günstige Saison vor allem um den Spätsommer und wetterabhängig ggf. auch der Frühsommer.
Weiterhin ist eine Übertragung durch Brustmilch, Knochenmark-, Leber- und Herztransplantationen, Blutkonserven, Laborunfälle wie Schnittverletzungen beim Hantieren mit infiziertem Hirngewebe sowie die transplazentare Transmission beschrieben.

7.42.2 Symptome/Erkrankungen

Die Infektionen mit WNV verlaufen klinisch überwiegend asymptomatisch.

In der Regel heilt das West-Nil-Fieber komplikationslos aus, wobei bei Enzephalitis-Patienten Spätfolgen relativ häufig (ca. 50%) auftreten. Etwa 5-10% der älteren Patienten und Patienten mit einer kardiovaskulären Vorerkrankung oder einer Immunsuppression, versterben an einer neuroinvasiven West-Nil-Erkrankung.

Therapie:

Eine spezifische antivirale Therapie der WNV-Enzephalitis gibt es nicht. Das West-Nil-Fieber wird nur symptomatisch behandelt. Derzeit kann das Krankheitsbild nur durch eine intensivmedizinische Betreuung positiv beeinflusst werden.

7.42.3 Diagnostische Methoden

Als Material für die RNA-PCR in den ersten Tagen nach Symptombeginn dient Vollblut, Serum oder Liquor. Später ist ein Antikörpermachweis mittels West-Nil-Virus-ELISA (für die Immunglobuline IgM und IgG) aus Serum oder Liquor möglich. Da die IgM-Antikörper teilweise lang nachweisbar sind, werden zur abschließenden Diagnose zu Verlaufsuntersuchungen geraten, damit die Serokonversion oder ein 4-facher Anstieg des spezifischen Antikörpertiters bestätigt werden kann.

7.42.4 Untersuchungsindikationen und Materialien

Untersuchungsindikationen auf West-Nil-Virus sind:

- erkrankte Reiserückkehrern aus Regionen mit West-Nil-Virus-Übertragung und ätiologisch unklaren Enzephalitiden
- gehäuft auftretende Fälle von unklarem Fieber mit oder ohne Hautausschläge.

Als Material für die RNA-PCR in den ersten Tagen nach Symptombeginn dient Vollblut, Serum oder Liquor. Später ist ein Antikörpernachweis mittels West-Nil-Virus-ELISA (für die Immunglobuline IgM und IgG) aus Serum oder Liquor möglich.
7.42.5 Virologische Interpretationen und klinische Bedeutung

Sicherheit von Blutprodukten:

7.42.6 Besondere diagnostische Probleme
Es kann zu einer Übertragung durch Organtransplantation, durch Blutprodukte oder während der Schwangerschaft kommen.

Bei dem West-Nil-Virus-Nachweis ist zu beachten, dass es im ELISA auch zu Kreuzreaktionen mit anderen Flaviviren (Infektion oder Impfung) wie beispielsweise FSME, Gelbfieber, Dengue, Japanische Enzephalitis, Usutu kommen kann.

7.42.7 Meldepflicht
In Deutschland besteht seit 2016 eine Meldepflicht nach §7 IfSG für den direkten oder indirekten Erregernachweis von West-Nil Viren.

7.43 Zika-Virus (Familie: Flaviviridae)

7.43.1 Erreger und Infektion

7.43.1.1 Virus

Beim Zika-Virus wird von den folgenden Virusproteinen ausgegangen:
- Strukturproteine: Kapsidprotein S, Prä-Membran/Membranprotein M, Hüllprotein
- Nicht-Strukturproteine: NS1, NS2A, NS2B, NS3, NS4A, NS4B, NS5

Das Virion des Zika-Virus hat einen Durchmesser von ca. 50 nm. Die Virushülle und das Kapsid haben eine ikosaedrische Form mit jeweils 3 Homodimeren des E-Proteins auf den Oberflächen (Rezeptor, Transmembranprotein, fusogenes Protein).
7.43.1.2 Epidemiologie

7.43.1.3 Infektionsformen

Theoretisch ist eine Übertragung über Bluttransfusionen, wenn auch äußerst unwahrscheinlich, möglich. Deshalb dürfen Reisende aus Risikogebieten für einige Wochen kein Blut spenden.

Das Virus kann sich über Wochen bis Monate im Körper befinden. Anschließend besteht vermutlich eine lebenslange Immunität.

7.43.2 Symptome/Erkrankungen

Eine Zika-Virus-Infektion verläuft meist asymptomatisch (bei ca. 75-80% der Erkrankten).

Bei einem milden Verlauf (ca. 20-25% der Erkrankten) treten die ersten Symptome ca. zwei bis sieben (bis zu 12) Tage nach der Infektion auf.

Dabei handelt es sich um folgende Symptome, die für 2-7 Tage anhalten:

- leichtes Fieber (ca. 38 °C)
- makulopapulöses Exanthem
- Gelenkschmerzen
- gerötete Augen durch eine Konjunktivitis

Selten:

- Abgeschlagenheit
- Kopf- und Muskelschmerzen
Schwindel
Magenschmerzen
Übelkeit mit Erbrechen und Durchfall.

In den meisten Fällen klingt die Infektion jedoch ohne weitere Folgen ab. Dennoch sollte im Falle einer etwaigen Infektion (Urlaubsrückkehr, Kontakt zu infizierter Person) ein Hausarzt oder Facharzt für Tropenmedizin aufgesucht werden.

In der Regel heilt eine Zika-Virus-Infektion innerhalb weniger Tage aus, während der Hautausschlag etwa eine Woche bestehen bleibt.

Therapie:
Es ist keine Zika-Virus-spezifische antivirale Therapie vorhanden. Somit wird nur symptomatisch behandelt (Bettruhe, ausreichende Flüssigkeitszufuhr, Medikamente zur Schmerzlinderung und Fiebersenkung).

Bei einer Zika-Virus-Infektion-induzierten Bindehautentzündung wird der Arzt diese behandeln.

7.43.3 Diagnostische Methoden

Erregerdirektnachweis:
Aus viraler RNA mittels RT-PCR aus Serum, Urin, Sperma.

Serologie:
Nachweis spezifischer Antikörper (IgA, IgG, IgM) im Serum durch ELISA.

7.43.4 Untersuchungsindikationen und Materialien

Probenmaterial für:
- Erregerdirektnachweis: Blut, Urin, Sperma
- Serologie: Serum/Plasma für Nachweis der Antikörper

7.43.5 Virologische Interpretationen und klinische Bedeutung

In Einzelfällen kann bei infizierten Schwangeren das Virus noch mehrere Wochen später mittelst RT-PCR im Blut nachgewiesen werden.

Ein Virusnachweis durch PCR kann im Urin bis zu 4 Wochen möglich sein.

<table>
<thead>
<tr>
<th>Bearbeiter*in</th>
<th>Freigeb*in</th>
<th>ID</th>
<th>Revision</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Gentner-Göbel, Eva</td>
<td>Prof. Dr. Stammlinger, Thomas</td>
<td>22222</td>
<td>09/12.09.2022</td>
<td>161/173</td>
</tr>
</tbody>
</table>
7.43.6 Besondere diagnostische Probleme

Infektion in der Schwangerschaft:

Risikogruppen:
- Menschen mit Vorerkrankungen (Bluthochdruck, Diabetes, Herzinsuffizienz),
- Menschen mit geschwächtem Immunsystem (z. B. durch eine HIV-Infektion, Chemotherapie),
- Ältere,
- Schwangere.

7.43.7 Meldepflicht

Seit 2016 besteht in Deutschland eine Meldepflicht nach §7 IfSG für den direkten oder indirekten Erregernachweis von Zikaviren.

7.44 Zytomegalievirus (CMV) (Familie: Herpesviridae – Betaherpesvirinae)

7.44.1 Erreger und Infektion

7.44.1.1 Virus

7.4.1.2 Epidemiologie

Die Infektion kann prä-, peri- und postnatal übertragen werden. Die pränatale Übertragung (0,1–0,5% der Neugeborenen) erfolgt diaplazentar bei Virämie der Mutter (Primärinfektion oder Reaktivierung). Eine perinatale Infektion (bis 5% der Neugeborenen) ist während der Geburt über Zervixsekret und anschließend über Muttermilch möglich. Postnatal erfolgt die Übertragung bei engem Kontakt durch Speichel, Schmierinfektion, Intimverkehr sowie iatrogen durch Transfusion (Leukozyten) und Transplantation. Die Durchseuchung schwankt je nach sozioökonomischem Status zwischen 30 und 100%. Es gibt zwei Infektionsgipfel (Kleinkindalter und nach Aufnahme intimer Kontakte). Lebenslang kann es zu intermittierender Virusausscheidung (Speichel, Genitalsekrete, Urin) kommen.

7.4.1.3 Infektionsformen

7.4.1.4 Inkubationszeit

Die Inkubationszeit beträgt 20–60 Tage bei Primärinfektion.

7.4.2 Symptome/Erkrankungen

Bei pränatalen Infektionen und perinatal infizierten Frühgeborenen kann es zu schweren Schäden und Erkrankungen kommen (z. B. Enzephalitis, Chorioretinitis, Pneumonie, Hepatitis, Mikrozephalie, Knochenmarkdepression, Hepatosplenomegalie), ganz vorwiegend bei Primärinfektionen der Mutter.

7.4.3 Diagnostische Methoden

Nachweis von Viren oder Virusbestandteilen (Antigen/Nukleinsäure)

<table>
<thead>
<tr>
<th>Methode</th>
<th>Probenmaterial/Transport</th>
<th>Ergebnis/Einheit</th>
<th>Anmerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virusisolierung</td>
<td>Heparinblut/EDTA-Blut</td>
<td>nach KZK</td>
<td>KZK: 24-48 h</td>
</tr>
<tr>
<td></td>
<td>(Virmat)</td>
<td>semiquantitativ,</td>
<td>LKZ: bis 6 Wochen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>nach LKZ Virus isoliert/nicht isoliert</td>
<td>Isolat ermöglicht</td>
</tr>
<tr>
<td></td>
<td>Frucht- oder Muttermilch, Biopsie.</td>
<td>Transport: max. 24 h, gekühlt.</td>
<td>Resistenztestung</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resistenztestung: GCV, PFA phänotypisch (FRT)</td>
<td>Virusisolat</td>
<td>sens, intermed, resist HD30 µM</td>
<td>langwierig, abhängig von Isolierung.</td>
</tr>
</tbody>
</table>

Bearbeiter*in: Dr. Gentner-Göbel, Eva
Freigabe*in: Prof.Dr. Stamneger, Thomas
ID: 22223
Revision: 09/12.09.2022
Seite: 163 von 173

Ausgedruckt ist das Dokument eine unkontrollierte Kopie und unterliegt nicht dem Änderungsdienst.
Nachweis spezifischer Antikörper

<table>
<thead>
<tr>
<th>Methode</th>
<th>Probenmaterial/Transport</th>
<th>Ergebnis/Einheit</th>
<th>Anmerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT in Zellkultur</td>
<td>Serum, Liquor</td>
<td>Titer</td>
<td>langwierig, nicht standardisiert; Diagnose kürzlicher Inf.</td>
</tr>
<tr>
<td>KBR</td>
<td>Serum</td>
<td>Titer</td>
<td>Standardisiert, Sens: gering</td>
</tr>
</tbody>
</table>

Antigennachweis direkt aus dem Untersuchungsmaterial:

Nukleinsäure nachweis direkt aus dem Untersuchungsmaterial:
Mit der qPCR (2-4 Stunden) kann in allen Atemwegsmaterialien (BAL bei Pneumonie), im EDTA-Blut/Serum/Plasma, (im Liquor, in der Muttermilch, im Urin, im Stuhl und in Gewebeproben in VTM (z. B. aus Lunge, Darm)) quantitativ nachgewiesen werden (PCR ist teilweise kommerziell verfügbar).

Nachweis von Virus-Antigenen nach Kurzkultur bzw. Virusisolierung:

Antikörpennachweis:
CMV-IgM-Antikörper erscheinen 2-4 Wochen nach Infektion, während CMV-IgG-Antikörper 4 Wochen danach auftreten.
Da IgM-Antikörper teilweise auch bei Reaktivierung auftreten ist die Primärinfektion bei nicht bekanntem vorherigem Serostatus nur über die IgG-Aviditätsberstimmung und Ak-Bestimmung gegen gB und gH mittels Immunoblot (kommerziell verfügbar) oder den NT bzw. gB-ELISA (neutralisierende Ak gegen gB und gH treten

<table>
<thead>
<tr>
<th>Bearbeiter*in</th>
<th>Freigabe*in</th>
<th>ID</th>
<th>Revision</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Gentner-Göbel, Eva</td>
<td>Prof. Dr. Stamminger, Thomas</td>
<td>22222</td>
<td>09/12/09, 2022</td>
<td>164 von 175</td>
</tr>
</tbody>
</table>

Ausgedruckt ist das Dokument eine unkontrollierte Kopie und unterliegt nicht dem Änderungsdienst
50-100 Tage später auf) abzusichern. Serumpaare sind erforderlich, um die Serokonversion oder einen Titeranstieg zu erkennen. Bis auf den NT sind alle serologischen Verfahren kommerziell verfügbar.

7.44.4 Untersuchungsindikationen und Materialien

Feststellung des Infektionsstatus (CMV-Latenz):
Nachweis von IgG-Antikörpern im Serum (ELISA/IFT).

Primärinfection:

Reaktivierung:

Resistenztestung:
Bei Langzeittherapie mit antiviralen Substanzen (CMV-Retinitis bei AIDS-Patienten) kann die Sensitivität von isolaten gegenüber antiviralen Substanzen in vitro und zum Teil durch Genotypisierung bestimmt werden.

Indikationen für Notfalldiagnostik:
Transplantatspendertest (CMV-IgG), Verdacht auf systemische CMV-Erkrankung bei Immunkompromittierten (Antigenämie, CMV-DNA-Nachweis oder Kurzzeitkultur), Enzephalitis (CMV-DNA im Liquor).

7.44.5 Virologische Interpretationen und klinische Bedeutung

- Der Nachweis CMV-spezifischer Antikörper beweist, dass eine Infektion stattgefunden hat, ohne dass der Infektionszeitpunkt bekannt ist (cave: passive Übertragung von Antikörpern).
- Der Nachweis einer kurzfristigen Serokonversion bei Untersuchung zweier Seren (CMV-IgG) beweist eine Primärinfektion (cave: passive Übertragung von Antikörpern).
- Ein im gleichen Testansatz gefundener signifikanter Antikörperanstieg bei bekannter Seropositivität weist auf eine Reaktivierung hin.
- Der Nachweis einer Antigenämie und/oder Virusausscheidung beweist eine aktive Infektion. Für die Unterscheidung zwischen Primärinfektion und Reaktivierung bedarf es zusätzlicher virologischer Befunde (Verhältnis der CMV-spezifischen IgG-Klassen und Subklassen, Epitopspezifität [neutralisierende Antikörper], Aviditätsunterschiede).
7.44.6 Diagnostische Probleme

- Der qualitative Nachweis von CMV-DNA mittels der PCR aus Serum, Plasma und Leukozyten hat nur einen geringen prädiktiven Wert für eine CMV-assoziierte Organerkrankung. Ein quantitativer Nachweis von CMV-DNA ist unbedingt erforderlich.
- Die ätiologische Bedeutung der nachgewiesenen aktiven CMV-Infektion (Primärinfektion oder Reaktivierung) ist in vielen Fällen unklar. Die Interpretation muss im Kontext mit der Klinik und weiteren Befunden erfolgen.
- Die Standardisierung der verschiedenen Methoden zum Virusnachweis ist unbefriedigend.
- Materialien für die Virusisolierung sollten bei längerem Transport gekühlt – aber nicht gefroren – werden. EDTA-/Heparinblut sollte innerhalb von 24 h im Labor eintreffen.

Da die CMV-Mononukleose von der EBV-Mononukleose klinisch nicht abzugrenzen ist, ist zur Absicherung u. U. eine EBV- und CMV-Serologie durchzuführen. Im Falle der EBV-negativen Mononukleose ist bei immunkompetenten Patienten im allgemeinen eine Serumuntersuchung mit dem ELISA auf IgM- und IgG-Antikörper ausreichend, allerdings ist zu bedenken, dass IgM-Antikörperrnachweise ohne IgG-Serokonversion eine frische Primärinfektion nicht sicher beweisen, da CMV-IgM-Antikörper bis zu 2 Jahre persistieren können und teilweise auch bei CMV-Reaktivierung nachweisbar sind.

Der pp65-Antigennachweis erfordert ein großes Blutvolumen (2-5ml EDTA-Blut), ist arbeitsintensiv und erfordert für die semiquantitative Auswertung am Mikroskop erfahrenes Personal. Der Test ist unmittelbar nach einer KMT wegen der geringen Zahl an Leukozyten insensitiv.

Der Einsatz der Antikörperringnostik bei immunsupprimierten Patienten ist bei CMV-Reaktivierung nicht sinnvoll. Die KBR hat auf Bedeutung verloren und wird kaum noch eingesetzt. Sie ist nicht geeignet den Serostatus zu bestimmen.
Stufendiagnostik

Um die CMV-Mononukleose von der EBV-Mononukleose abzugrenzen ist eine serologische Untersuchung erforderlich. Für die Diagnose der CMV-Primärinfektion ist bei Paul-Bunnell-negativem Serum die CMV-IgG- und CMV-IgM-Antikörper-Bestimmung meist ausreichend.

7.44.7 Meldepflicht

keine
8. Anhang

8.1 Meldewesen

8.1.1 Siehe Meldepflichtige Krankheiten und Krankheitserreger des RKI

8.2 Postversandvorschriften

Siehe Berufsgenossenschaft für Gesundheitsdienst und Wohlfahrtspflege (BGW)
- Patientenproben richtig versenden
- Gefährdungsbeurteilung
9. Literatur

10. Abkürzungen

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutscher Begriff</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADE</td>
<td>antibody-dependent enhancement</td>
</tr>
<tr>
<td>AdV</td>
<td>Adenoviren</td>
</tr>
<tr>
<td>Ag</td>
<td>Antigen</td>
</tr>
<tr>
<td>AIDS</td>
<td>Acquired Immunodeficiency Syndrome = erworbenes Immunschwächessyndrom</td>
</tr>
<tr>
<td>Ak</td>
<td>Antikörper</td>
</tr>
<tr>
<td>ATL</td>
<td>adulte T-Zell-Leukämie</td>
</tr>
<tr>
<td>ATLL</td>
<td>Adulte T-Zell-Leukämie</td>
</tr>
<tr>
<td>AuA (Abstrich)</td>
<td>Augenabstrich</td>
</tr>
<tr>
<td>BAL</td>
<td>bronchoalveoläre Lavage</td>
</tr>
<tr>
<td>BCBL</td>
<td>body cavity-based lymphoma</td>
</tr>
<tr>
<td>BKV</td>
<td>BK-Virus (Polyomavirus)</td>
</tr>
<tr>
<td>BLV</td>
<td>bovines Leukämievirus</td>
</tr>
<tr>
<td>CCHF</td>
<td>Krim-Kongo-Fieber-Virus</td>
</tr>
<tr>
<td>CDC-Klassifikation</td>
<td>Centers for Disease Control-Klassifikation</td>
</tr>
<tr>
<td>CMV</td>
<td>Zytomegalievirus</td>
</tr>
<tr>
<td>COVID-19</td>
<td>coronavirus disease 2019</td>
</tr>
<tr>
<td>DD</td>
<td>Differentialdiagnose</td>
</tr>
<tr>
<td>DGGG</td>
<td>Deutschen Gesellschaft für Gynäkologie und Geburtshilfe</td>
</tr>
<tr>
<td>DNA</td>
<td>Desoxyribonukleinsäure</td>
</tr>
<tr>
<td>ds-DNA</td>
<td>doppelsträngige DNA</td>
</tr>
<tr>
<td>DSS</td>
<td>Diathese und Schocksymptomatik</td>
</tr>
<tr>
<td>EBER</td>
<td>Epstein–Barr virus–encoded small RNA</td>
</tr>
<tr>
<td>EBNA</td>
<td>EBV-specifisches nukleares Antigen</td>
</tr>
<tr>
<td>EBV</td>
<td>Epstein-Barr-Virus</td>
</tr>
<tr>
<td>ECHO-Viren</td>
<td>enteric cytopathogenic human orphan Viren</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethyldiamintetraacetat</td>
</tr>
<tr>
<td>Ei</td>
<td>Erythema infectiosum</td>
</tr>
<tr>
<td>EIA</td>
<td>Enzym-immunoassay, enzymatisches Immunadsorptionsverfahren</td>
</tr>
<tr>
<td>EK</td>
<td>Einschlusskörper</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme linked immunosorbent assay</td>
</tr>
<tr>
<td>EM</td>
<td>Elektronenmikroskopie</td>
</tr>
<tr>
<td>EV</td>
<td>Enteroviren</td>
</tr>
<tr>
<td>FFP3</td>
<td>Filtering Face Piece; filternder Gesichts-Aufsatz (Klasse 3)</td>
</tr>
<tr>
<td>FRT</td>
<td>Fokus-Reduktionstest</td>
</tr>
<tr>
<td>FRT</td>
<td>Fokus-Reduktionstest</td>
</tr>
<tr>
<td>FSME</td>
<td>Frühsommermeningoenzephalitis</td>
</tr>
<tr>
<td>GCV</td>
<td>Ganciclovir</td>
</tr>
<tr>
<td>GPT</td>
<td>Glutamat-Pyruvat-Transaminase</td>
</tr>
<tr>
<td>HAM</td>
<td>HTLV-assoziierte Myelopathie</td>
</tr>
<tr>
<td>HAV</td>
<td>Hepatitis A-Virus</td>
</tr>
</tbody>
</table>

Bearbeiter*in: Dr. Gentner-Göbel, Eva
Freigabe*in: Prof. Dr. Staminger, Thomas
ID: 22223
Revision: 23/12/2022
Seite: 170 von 173
<table>
<thead>
<tr>
<th>symptom</th>
<th>definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>HBCAg</td>
<td>Hepatitis-B-Virus Core-Antigen</td>
</tr>
<tr>
<td>HBEAg</td>
<td>Hepatitis-B-e-Antigen</td>
</tr>
<tr>
<td>HBoV</td>
<td>humane Bocaparvovirus</td>
</tr>
<tr>
<td>HBSAg</td>
<td>Hepatitis B surface Antigen</td>
</tr>
<tr>
<td>HBV</td>
<td>Hepatitis-B-Virus</td>
</tr>
<tr>
<td>HCV</td>
<td>Hepatitis-C-Virus</td>
</tr>
<tr>
<td>HCV</td>
<td>Hepatitis C-Virus</td>
</tr>
<tr>
<td>HDF</td>
<td>Hämorrhagisches Dengue-Fieber</td>
</tr>
<tr>
<td>HDV</td>
<td>Hepatitis D-Virus</td>
</tr>
<tr>
<td>HEV</td>
<td>Hepatitis E-Virus</td>
</tr>
<tr>
<td>HFRS</td>
<td>Hämorrhagisches Fieber mit renalem Syndrom</td>
</tr>
<tr>
<td>HHT</td>
<td>Hämagglutinations-Hemmtest</td>
</tr>
<tr>
<td>HHV-6</td>
<td>humanes Herpesvirus 6</td>
</tr>
<tr>
<td>HHV-7</td>
<td>Humanes Herpesvirus 7</td>
</tr>
<tr>
<td>HHV-8</td>
<td>humanes Herpesvirus 8</td>
</tr>
<tr>
<td>HIG</td>
<td>Hyperimmunglobulin</td>
</tr>
<tr>
<td>HIV</td>
<td>humanes Immundefizienzvirus</td>
</tr>
<tr>
<td>HIV-1/2</td>
<td>Humanes Immunschwächevirus, Typ 1/2</td>
</tr>
<tr>
<td>HMPV</td>
<td>Humanes Metapneumovirus</td>
</tr>
<tr>
<td>HPS</td>
<td>Hantavirus-Pulmonalem-Syndrom</td>
</tr>
<tr>
<td>HPV</td>
<td>humane Papillomaviren</td>
</tr>
<tr>
<td>HRV</td>
<td>humane Rhinoviren</td>
</tr>
<tr>
<td>HSV</td>
<td>Herpes-simplex-Virus</td>
</tr>
<tr>
<td>HTLV</td>
<td>Humanes T-lymphotropes Virus</td>
</tr>
<tr>
<td>HuAsV</td>
<td>humanen Astroviren</td>
</tr>
<tr>
<td>ICAM-1</td>
<td>intercellular adhesion molecule 1</td>
</tr>
<tr>
<td>ICH</td>
<td>Immunchromatographie</td>
</tr>
<tr>
<td>IEF</td>
<td>isoelektrische Fokussierung</td>
</tr>
<tr>
<td>IEM</td>
<td>Immunelektronenmikroskopie</td>
</tr>
<tr>
<td>IFSG</td>
<td>Infektionsschutzgesetz</td>
</tr>
<tr>
<td>IFT</td>
<td>Immunfluoreszenztest</td>
</tr>
<tr>
<td>lg</td>
<td>Immunglobulin</td>
</tr>
<tr>
<td>lgG</td>
<td>Immunglobulin G</td>
</tr>
<tr>
<td>lgM</td>
<td>Immunglobulin M</td>
</tr>
<tr>
<td>ISH</td>
<td>In-situ-Hybridisierung</td>
</tr>
<tr>
<td>Isol</td>
<td>Isolation</td>
</tr>
<tr>
<td>IU/ml</td>
<td>internationale Units pro ml</td>
</tr>
<tr>
<td>JCV</td>
<td>JC-Virus (Polyomavirus)</td>
</tr>
<tr>
<td>JEV</td>
<td>Japan-Enzephalitis-Virus</td>
</tr>
<tr>
<td>kb</td>
<td>Kilobasen</td>
</tr>
<tr>
<td>KBR</td>
<td>Komplementbindungsreaktion</td>
</tr>
<tr>
<td>KM</td>
<td>Knochenmark</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Definition</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td>KMT</td>
<td>knochenmarktransplantierte, Knochenmarktransplantation</td>
</tr>
<tr>
<td>KS</td>
<td>Kaposi-Sarkom</td>
</tr>
<tr>
<td>KSHV</td>
<td>Kaposi's sarcoma-associated herpesvirus</td>
</tr>
<tr>
<td>KZK</td>
<td>Kurzzeitkultur</td>
</tr>
<tr>
<td>LBM</td>
<td>Llm-Benyesh-Melnick-Seren</td>
</tr>
<tr>
<td>LC</td>
<td>Light Cycler</td>
</tr>
<tr>
<td>LDL</td>
<td>low-density lipoprotein</td>
</tr>
<tr>
<td>LMP</td>
<td>latent membrane protein</td>
</tr>
<tr>
<td>LZK</td>
<td>Langzeitkultur</td>
</tr>
<tr>
<td>MCV</td>
<td>Molluscum-contagiosum-Virus</td>
</tr>
<tr>
<td>MERS-CoV</td>
<td>Middle East Respiratory Syndrome Coronavirus</td>
</tr>
<tr>
<td>MIBE</td>
<td>measles inclusion body encephalitis</td>
</tr>
<tr>
<td>MIT</td>
<td>Mäuse-inokulationstest</td>
</tr>
<tr>
<td>ml</td>
<td>Milliliter</td>
</tr>
<tr>
<td>MNT</td>
<td>Mausneutralisationstests</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger RNA</td>
</tr>
<tr>
<td>NA (Abstrich)</td>
<td>Nasenabstrich</td>
</tr>
<tr>
<td>neg</td>
<td>negativ</td>
</tr>
<tr>
<td>nm</td>
<td>Nanometer</td>
</tr>
<tr>
<td>NPA</td>
<td>Nasopharyngeales Aspirat</td>
</tr>
<tr>
<td>NPS</td>
<td>Nasopharyngeales Sekret</td>
</tr>
<tr>
<td>NRS</td>
<td>Nasen-Rachen-Sekret</td>
</tr>
<tr>
<td>NT</td>
<td>Neutralisationstest</td>
</tr>
<tr>
<td>ORF</td>
<td>Open reading frame</td>
</tr>
<tr>
<td>OT</td>
<td>Objekträger</td>
</tr>
<tr>
<td>Partikel/g</td>
<td>Partikel/Gramm</td>
</tr>
<tr>
<td>PBL</td>
<td>periphere Blutleukozyten</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate Buffered Saline, Phosphatpuffer</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase-Kettenreaktion</td>
</tr>
<tr>
<td>PEI</td>
<td>Paul-Ehrlich-Institut</td>
</tr>
<tr>
<td>PEP</td>
<td>Postexpositionsprophylaxe</td>
</tr>
<tr>
<td>PFA</td>
<td>Phosphonof ormic acid, Foscarnet</td>
</tr>
<tr>
<td>PFU</td>
<td>Plaque Forming Unit</td>
</tr>
<tr>
<td>Pg/ml</td>
<td>Pikogramm pro Milliliter</td>
</tr>
<tr>
<td>pH</td>
<td>potentia hydrogeni, Potential des Wasserstoffs</td>
</tr>
<tr>
<td>PML</td>
<td>progressive multifokale Leukenzephalopathie</td>
</tr>
<tr>
<td>pos</td>
<td>positiv</td>
</tr>
<tr>
<td>PTLD</td>
<td>Posttransplantation Lymphoproliferative Disease</td>
</tr>
<tr>
<td>PYB19</td>
<td>Parvovirus B19</td>
</tr>
<tr>
<td>Q-Fieber</td>
<td>query fever</td>
</tr>
<tr>
<td>quant.</td>
<td>quantitativ</td>
</tr>
<tr>
<td>RA (Abstrich)</td>
<td>Rachenabstrich</td>
</tr>
<tr>
<td>Respir.</td>
<td>respiratorisch</td>
</tr>
<tr>
<td>Kürzel</td>
<td>Definition</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
</tr>
<tr>
<td>RFFIT</td>
<td>Rapid fluorescent focus inhibition test</td>
</tr>
<tr>
<td>RFLP</td>
<td>Restriktionsfragmentlängenpolymorphismus</td>
</tr>
<tr>
<td>RKI</td>
<td>Robert-Koch-Institut</td>
</tr>
<tr>
<td>RKU</td>
<td>Rehabilitationskrankenhaus Ulm</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonukleinsäuren</td>
</tr>
<tr>
<td>RSP</td>
<td>Rachenspülung</td>
</tr>
<tr>
<td>RSV</td>
<td>Respiratory Syncytial Virus</td>
</tr>
<tr>
<td>RSV</td>
<td>Respiratory-Syncytial-Virus</td>
</tr>
<tr>
<td>RT</td>
<td>Raumtemperatur</td>
</tr>
<tr>
<td>RTCIT</td>
<td>Rabies tissue culture inoculation test</td>
</tr>
<tr>
<td>RT-PCR</td>
<td>Real-Time PCR, quantitative PCR</td>
</tr>
<tr>
<td>RVF</td>
<td>Riftval-Fieber-Virus</td>
</tr>
<tr>
<td>S₂</td>
<td>Sicherheitsstufe 2</td>
</tr>
<tr>
<td>S₃-Bedingungen</td>
<td>Sicherheitsstufe 3; Hochsicherheitsbedingungen</td>
</tr>
<tr>
<td>SARS-CoV-2</td>
<td>Severe acute respiratory syndrome coronavirus type 2</td>
</tr>
<tr>
<td>Sens</td>
<td>Sensitivität</td>
</tr>
<tr>
<td>Spez</td>
<td>Spezifität</td>
</tr>
<tr>
<td>SSPE</td>
<td>subakuten sklerosierenden Panenzephalitis</td>
</tr>
<tr>
<td>ss-RNA</td>
<td>Einzelstrang (Single Strand)-RNA</td>
</tr>
<tr>
<td>SSW</td>
<td>Schwangerschaftswochen/∞</td>
</tr>
<tr>
<td>TBB</td>
<td>Transbronchiale Biopsie</td>
</tr>
<tr>
<td>TS</td>
<td>Trachealsekret</td>
</tr>
<tr>
<td>TSP</td>
<td>tropische spastische Paraparese</td>
</tr>
<tr>
<td>u.a.</td>
<td>unter anderem / und andere</td>
</tr>
<tr>
<td>UL₅₄(CMV)</td>
<td>DNA polymerase encoding region</td>
</tr>
<tr>
<td>UL₉₇(CMV)</td>
<td>phosphotransferase encoding region</td>
</tr>
<tr>
<td>UZ-Dichtegradient</td>
<td>Dichtegradientenultrazentrifugation</td>
</tr>
<tr>
<td>v.a.</td>
<td>vor allem</td>
</tr>
<tr>
<td>VCA</td>
<td>Virus kapsidantigen (EBV)</td>
</tr>
<tr>
<td>VHF</td>
<td>virales hämorrhagisches Fieber</td>
</tr>
<tr>
<td>Vi</td>
<td>Virusisolierung</td>
</tr>
<tr>
<td>VTM</td>
<td>Virus-Transportmedium</td>
</tr>
<tr>
<td>VZV</td>
<td>Varizella-Zoster-Virus</td>
</tr>
<tr>
<td>WB</td>
<td>Western Blot (Immunoblot)</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization, Weltgesundheitsorganisation</td>
</tr>
<tr>
<td>WNV</td>
<td>West-Nil-Virus</td>
</tr>
<tr>
<td>XLP-Syndrom</td>
<td>X-chromosomale lymphoproliferative Syndrom</td>
</tr>
<tr>
<td>ZNS</td>
<td>Zentralnervensystem</td>
</tr>
<tr>
<td>µl</td>
<td>Mikroliter</td>
</tr>
</tbody>
</table>