Relative Energy Deficiency in Sport (RED-S) in Rowers?

Kate Ackerman, MD, MPH, FACSM

USRowing - Team Physician Medical Director of Female Athlete Program, Boston Children's Hospital Associate Director- Sports Endocrine Reearch Lab, Massachusetts General Hospital Assistant Professor of Medicine- Harvard Medical School

> Kathryn.ackerman@childrens.harvard.edu @DrKateAckerman

Disclosures

- Member- Female Athlete Triad Coalition (FATC)
- Member- International Olympic Committee's Relative Energy Deficiency in Sport (IOC RED-S) and Female Athlete Working Groups
- Endocrine Consultant- FISA Medical Commission

Objectives

- Understand the origin of RED-S
- Explain current evidence of the various aspects of RED-S with a focus on rowers
- Describe future directions for RED-S

WE NEED TO APPROPRIATELY FUEL OUR ATHLETES AND LOOK OUT FOR RED-S!

THE MICHELI CENTER FOR SPORTS INJURY PREVENTION

The Female Athlete Triad

Nattiv A, et al. Med Sci Sports Exerc, 2007. De Souza MJ, et al. Br J Sports Med, 2014.

THE MICHELI CENTER FOR SPORTS INJURY PREVENTION

The IOC consensus statement: beyond the Female Athlete Triad—Relative Energy Deficiency in Sport (RED-S)

Margo Mountjoy,¹ Jorunn Sundgot-Borgen,² Louise Burke,³ Susan Carter,⁴ Naama Constantini,⁵ Constance Lebrun,⁶ Nanna Meyer,⁷ Roberta Sherman,⁸ Kathrin Steffen,^{2,9} Richard Budgett,⁹ Arne Ljungqvist⁹

IOC consensus statement on relative energy deficiency in sport (RED-S): 2018 update

Margo Mountjoy,¹ Jorunn Kaiander Sundgot-Borgen,² Louise M Burke,^{3,4} Kathryn E Ackerman,^{5,6} Cheri Blauwet,⁷ Naama Constantini,⁸ Constance Lebrun,⁹ Bronwen Lundy,³ Anna Katarina Melin,¹⁰ Nanna L Meyer,¹¹ Roberta T Sherman,¹² Adam S Tenforde,¹³ Monica Klungland Torstveit,¹⁴ Richard Budgett¹⁵

Mountjoy M, et al. Br J Sports Med, 2014, 2018.

Health Consequences of RED-S

Mountjoy M, et al. Br J Sports Med, 2014, 2018.

Boston Children's Hospital Sports Medicine

THE MICHELI CENTER FOR SPORTS INJURY PREVENTION

Potential Performance Effects of

Mountjoy M, et al. Br J Sports Med, 2014, 2018.

Boston Children's Hospital Sports Medicine

THE MICHELI CENTER FOR SPORTS INJURY PREVENTION

Low Energy Availability

- Energy Availability (EA):
 - Dietary energy intake (EI)- Exercise energy expenditure (EEE) normalized to fat-free mass (FFM): EA= (EI- EEE)/FFM
 - Ex. El= 2000 kcal/d, EEE= 600 kcal/d, FFM= 51 kg (2000-600)/51 = 27.5 kcal/kg of FFM/d
- Exercise energy expenditure: energy expended during exercise in excess of energy that would have been expended in non-exercise activity during same time interval

30 kcal/kg/FFM per day needed at a minimum. 45 may be ideal. Likely personal variation.

Loucks AB and Thuma JR. JCEM, 2003.

RED-S/Triad

Mountjoy M, et al. Br J Sports Med, 2014, 2018.

Boston Children's Hospital Sports Medicine

THE MICHELI CENTER FOR SPORTS INJURY PREVENTION

Interrelationship of Components of the Triad

• Negative Energy Balance \rightarrow Disruption of the Hypothalamic-Pituitary-Ovarian (HPO) axis

Boston Children's Hospital Sports Medicine

THE MICHELI CENTER FOR SPORTS INJURY PREVENTION

Interrelationship of Components of the Triad

- Low energy availability
 - -↓ BMI, fat mass, & lean mass
 - -↓ in FSH, LH, estradiol, androgens
 - $-\downarrow$ insulin, glucose, IGF-1, T₃, and leptin
 - -↑ in fasting PYY, ghrelin, cortisol, and GH resistance

Gordon C, Ackerman KE, et al. Functional Hypothalamic Amenorrhea: An Endocrine Society Clinical Practice Guideline. JCEM, 2017. Ackerman K and Misra M. "Neuroendocrine Abnormalities in Female Athletes" in <u>The Female Athlete Triad- A Clinical Guide</u>, 2015.

Bone Health in Women Rowers vs. Runners

- Study of 51 female runners and 66 rowers (46 openweight and 20 lightweight)
 - Higher rates of menstrual dysfunction in the lightweight rowers (vs. runners and vs. openweight rowers)
 - Bone mineral density:

Bone Health in Lightweight Women Rowers

- 29 Female lightweight rowers (12 active, 9 retired) were surveyed & had DXAs
 - Rowers with DE started rowing younger than those without & their amount of intentional weight loss was associated with EAT-26 score
 - 76% had history of oligomenorrhea/amenorrhea; 32% had history of rib pain
 - 41% had low BMD; 3 at Spine; 1 at Femoral Neck; 8 at Radius

Dimitriou L, et al. BMJ Open, 2014.

Boston Children's Hospital Sports Medicine

THE MICHELI CENTER FOR SPORTS INJURY PREVENTION

Bone Health in Lightweight Male Rowers

- 13 Danish team lightweight male rowers
 - BMD within normal range

• Lightweight rowers found to have lower testosterone, lower BMD, and increased risk of rib stress fracture compared to openweights

Vinther A, et al. Int J Sports Med, 2008. Vinther A, et al. Scand J Med Sci Sports, 2006.

Boston Children's Hospital Sports Medicine

THE MICHELI CENTER FOR SPORTS INJURY PREVENTION

Burke LM, et al. Int J Sport Nutr Exerc Metab, 2018.

Australian Rowing Teamcourtesy of Bronwen Lundy

- 12 openweight men- DXAs 2- 4.5 years apart
 - Lumbar Spine: 10 had decreases (1.3- 11.9% ↓); 2 had increases (0.1- 0.6% ↑), but decreases at the hip (5.0 & 8.2% ↓)
- 6 openweight women
 - More inconsistent results

Lundy B, unpublished data.

THE MICHELI CENTER FOR SPORTS INJURY PREVENTION

RED-S Health Consequences

Mountjoy M, et al. Br J Sports Med, 2014.

Boston Children's Hospital Sports Medicine

THE MICHELI CENTER FOR SPORTS INJURY PREVENTION

Endocrine Changes with RED-S

	Females	Males		
Hypothalamic-Pituitary-Gonadal Axis				
LH	\leftrightarrow , \downarrow	\uparrow , \leftrightarrow , \downarrow		
FSH	\leftrightarrow	\checkmark		
Estradiol	\checkmark	\checkmark		
Testosterone	$\uparrow, \leftrightarrow, \downarrow$	\leftrightarrow , \downarrow		
Progesterone	\checkmark			
Energy Homeostasis, Appetite				
Resting metabolic rate	\checkmark	\checkmark		
Leptin	\checkmark	\downarrow		
Adiponectin	\uparrow , \leftrightarrow			
Ghrelin	\uparrow	\leftrightarrow		
Peptide YY	\uparrow	\uparrow		
Oxytocin	\downarrow	\downarrow		
Insulin	\checkmark	\checkmark		
Amylin	\checkmark			

	Females	Males		
Hypothalamic-Pituitary-Adrenal Axis				
Cortisol	\uparrow , \leftrightarrow	\leftrightarrow		
Hypothalamic-Pituitary-Thyroid Axis				
TSH	\leftrightarrow	\leftrightarrow		
ГЗ	\checkmark	\checkmark		
Free T3	\checkmark	\checkmark		
Τ4	\uparrow , \leftrightarrow , \downarrow	\checkmark		
Free T4	\leftrightarrow , \downarrow	\checkmark		
Growth Hormone and IGF-1 Axis				
GH	\uparrow	\uparrow		
IGF-1	\leftrightarrow , \downarrow	\uparrow , \downarrow		
GF binding protein-1	\uparrow	\uparrow		

Elliott-Sale K, et al...Ackerman KE. IJSNEM, 2018.

Boston Children's Hospital Sports Medicine

THE MICHELI CENTER FOR SPORTS INJURY PREVENTION

$\textbf{RED-S} \rightarrow \textbf{Endocrine}$

- Thyroid
 - 32 subject cross-sectional study: lower T4 & T3 in AA vs. EA and HC
 - 27 subjects: AA, EA, and HC
 - TSH response to TRH stimulation was blunted in AA vs. EA
 - 27 eumenorrheic non-athletes:
 - 4 days of exercise but different energy availabilities
 - ↓ in T3 and free T3 between 19 and 25 kcal/kg FFM/day
 - \uparrow in T4 and rT3 between 10.8 and 19 kcal/kg FF/day

Harber VJ, et al. Can J Appl Physiol, 1998. Loucks AB and Health EM, A J Phys, 1994.

Loucks AB, et al. J Clin Endocrinol Metab, 1992.

RED-S → **Endocrine (ROWERS)**

- 17 collegiate female rowers
 - Labs at baseline and during 20 weeks of training
 - 10 had decreases in free T3 (responders); 7 had no change
 - In the responders:
 - free T3 concentrations \downarrow from baseline during an intense training period at 5 weeks by -28.2% & at 10 weeks by -24.9%, then returned towards baseline at 20 weeks
 - Similar changes in leptin and TSH
- 6 male rowers
 - high intensity resistance training for 3 weeks
 - Leptin, TSH, & free T3 ↓
 - endurance training for 3 weeks
 - TSH ↑

Depression of leptin and hypothalamic-thyroid axis associated with training intensity

Simsch C, et al. Int J Sports Med, 2002.

Boston Children's Hospital Sports Medicine

Baylor LS, Hackney AC. Eur J Appl Phys, 2003.

RED-S → **Metabolic**

- Metabolic Rate
 - Small study of normal weight women (n=25)
 - different exercise and caloric intake alterations for 3 months
 - SEV: -1062±80 kcal per day (n=9), MOD: -633±71 kcal per day (n=7), or BAL: (n=9)
 - Weight loss occurred in SEV (3.7kg) and MOD (2.7kg), but significantly less than predicted (SEV: 11.1kg; MOD: 6.5kg)
 - RMR \downarrow by 6±2% in MOD
 - In SEV, RMR did not change for entire group, but those whose RMR \downarrow lost more weight and had a higher baseline RMR than those whose RMR did not \downarrow
 - Expected changes in leptin, T3, IGF-1, and ghrelin occurred only in SEV
 - The energy deficit and adaptive changes in RMR explained 54% of weight loss
 Koehler K, et al. Eur J Clin Nutr, 2017.

RED-S → **Metabolic** (**ROWERS**)

- 10 Australian Team Rowers
 - -4 weeks of training
 - Training load ↑ 21 ± 7% but caloric intake didn't change

Woods AL, et al. PLoS One, 2017.

Boston Children's Hospital Sports Medicine

THE MICHELI CENTER FOR SPORTS INJURY PREVENTION

- Many athletes, including rowers, with reduced energy availability have iron deficiency
- Iron deficiency may worsen the hypometabolic state associated with decreased energy availability
 - T4 synthesis & T4 \rightarrow T3 conversion
- Iron deficiency may **promote** energy deficiency
 - Shifts ATP production from oxidative phosphorylation to anaerobic pathways
- Iron needed for reproductive function
 - Follicular development and corpus luteum function

• Bone health may be further impaired by iron deficiency

Petkus DL, et al. Sports Med, 2017.

RED-S → **Growth & Development**

2 to 20 years: Girls

Kapczuk K. Minerva Pediatra, 2017.

Boston Children's Hospital Sports Medicine

THE MICHELI CENTER FOR SPORTS INJURY PREVENTION

SAFER - NEALTHIER - PEOPLE

RED-S \leftrightarrow **Psychological**

- Drive for Thinness (DT) was assessed in exercising and sedentary women (n=52) using the Eating Disorder Inventory
 - Athletes with high DT (vs. athletes and non-athletes with normal DT)
 - Scored higher on questions re: Bulimia, Inefffectiveness, and Cognitive Restraint
 - Experienced more oligo/amenorrhea vs. other 2 groups
 - Had lower REE (kj/kg of FFM) and actual REE/predicted REE; more were classified as "energy deficient" (66% vs. 27% in the other groups)
 - Had lower total T3 and higher ghrelin
 - Significant negative correlation between DT and Total T3, adjusted REE; positive correlation between DT and ghrelin
- Adult lightweight male rowers: High levels of cognitive control of eating accompanied with body dissatisfaction under hunger but not satiety

De Souza MJ, et al. Appetite, 2007.

Pietrowsky R and Straub K. Eat Weight Disord, 2008.

$\textbf{RED-S} \rightarrow \textbf{Cardiovascular}$

- Postmenopausal women: Decreased levels of endogenous estrogen unfavorably modify lipid levels and vascular function
- Premenopausal women with anorexia nervosa and athletes with amenorrhea: poor lipid levels
 - Theories include interactions of estrogen deficiency, liver dysfunction, dehydration, reduced cholesterol turnover, ↓T3, and delayed cholesterol metabolism
- Retrospective data suggests development of early CAD in some older premenopausal women with history of FHA

Rickenlund A, et al. J Clin Endocrinol Metab, 2005. Nakai Y, et al. Intern Med, 2016.

O'Donnell E, et al. J Clin Endocrinol Metab, 2011.

$\textbf{RED-S} \rightarrow \textbf{Cardiovascular}$

- Estrogen stimulates vascular endothelium, leading to increased endothelial-derived nitric oxide (NO) → vasodilation
- NO also has anti-atherosclerotic properties
 - inhibition of platelet aggregation
 - smooth muscle proliferation
 - leukocyte adhesion
 - LDL oxidation
- Estrogen and regular aerobic physical activity are independently associated with enhanced synthesis &/or bioavailability of endothelial NO

Rickenlund A, et al. J Clin Endocrinol Metab, 2005.

O'Donnell E, et al. J Clin Endocrinol Metab, 2011.

$\textbf{RED-S} \rightarrow \textbf{Cardiovascular}$

- Flow-mediated dilation (FMD)
 - -can assess endothelial function in the brachial artery
 - 95% positive predictive value of abnormal brachial dilation in predicting coronary endothelial dysfunction

-FMD lower in AA vs. OA and EA

- Serum estrogen levels positively correlated with vascular function
- Restored vascular function was associated with 个 estrogen levels in AA who became eumenorrheic

Zeni Hoch A, et al. Med Sci Sports Exerc, 2003. Rickenlund A, et al. J Clin Endocrinol Metab, 2005.

Hoch AZ, et al. Clin J Sport Med, 2011.

Yoshida N, et al. Arterioscler Thromb Vasc Biol, 2006.

$\textbf{RED-S} \rightarrow \textbf{Gastrointestinal}$

- Systematic Review of 123 articles of patients with anorexia nervosa
 - Delayed gastric emptying, increased intestinal transit time, and constipation
 - -Elevated liver enzymes

Norris, ML. Int J Eat Disord, 2016

*Unpublished data

THE MICHELI CENTER FOR SPORTS INJURY PREVENTION

$\textbf{RED-S} \rightarrow \textbf{Gastrointestinal}$

- Survey of 1000 female sport medicine clinic patients (age 15-30 years, ≥4 hrs/wk of exercise)
 - -Surrogate markers of Low EA:
 - Self-report or DE/ED, BEDA-Q, ESP
 - -84.5% response rate
 - -Low EA 47.3%
 - 1.5x greater odds of GI complaints with Low EA vs. Adequate EA (95% CI 1.19-1.92, p<0.0001)

Self Report 201

68

100

84

ESP

123

126

BEDA-Q

391

$\textbf{RED-S} \rightarrow \textbf{Immunological}$

- Athletes with high training loads often experience impaired immune function and frequent URIs
- \downarrow salivary IgA correlates to \uparrow upper respiratory infections (URIs)
- Salivary IgA correlates with salivary estradiol
- Study of 21 Japanese elite, collegiate runners (13 AA, 8 EA)
 - Salivary IgA levels, serum 17β -estradiol and progesterone, and # of URI symptoms in last month
 - AA had lower levels of serum estradiol and IgA secretion, and more URI symptoms
- Elite Australian athletes prepping for Rio 2016
 - Low EA measured by LEAF-Q
 - 个 odds of illnesses (e.g.upper respiratory and GI tracts), body aches, and head-related symptoms in prior month

Drew MK, et al. J Sci Med Sport, 2017. Drew M, et al. Br J Sports Med, 2018.

Potential Performance Effects of RED-S

Mountjoy M, et al. Br J Sports Med, 2014, 2018.

Boston Children's Hospital Sports Medicine

THE MICHELI CENTER FOR SPORTS INJURY PREVENTION

RED-S → Injury Risk Proportion of Subjects with Stress Fracture each Year

Ackerman KE, et al. Med Sci Sports Exerc, 2015.

Boston Children's Hospital Sports Medicine

$\overbrace{\textbf{Kesponse (ROWERS)}}^{\text{FED-S}} \xrightarrow{\textbf{Decreased Training}} RED-S \rightarrow \underbrace{\textbf{Decreased Training}}_{\text{Response (ROWERS)}}$

- 10 Australian Team Rowers
 - -4 weeks of training
 - Training load went up 21 \pm 7% but caloric intake didn't change

Energy intake

5K time trial got slower!

Woods AL, et al. PLoS One, 2017.

Boston Children's Hospital Sports Medicine

THE MICHELI CENTER FOR SPORTS INJURY PREVENTION

- Neuomuscular performance assessed in elite amenorrheic athletes (AA) and eumenorrheic athletes (EA)
 - Knee muscular strength and knee muscular endurance worse in AA (11% and 20% \downarrow) and reaction time was 7% longer vs. EA
 - → leg FFM, glucose, estrogen, T3, and ↑ cortisol levels correlated with the findings

Tornberg AB, et al. MSSE, 2018.

$\overbrace{\bullet}^{F} RED-S \rightarrow Decreased Endurance \\ Performance \\ \hline$

- 10 junior elite female swimmers (15-17 years)
 - Cyclic (CYC) or Ovarian suppressed (OVS) based on E_2 and P_4 levels
 - Monitored q2 weeks over 12 weeks
 - OVS had suppressed E₂ and P₄ levels throughout season and had \downarrow T3 and IGF-1 at week 12 vs. CYC
 - Energy intake and energy availability lower in OVS
 - OVS had a 9.8% \uparrow in 400m swim time while CYC had an 8.2% \downarrow
- Survey: 1.47x greater odds of decreased endurance performance with Low EA vs. Adequate EA (95% CI 1.08-2.02, p=0.02)

Vanheest JL, et al. Med Sci Sports Exerc, 2014.

Boston Children's Hospital Sports Medicine

Ackerman KE, et al. Br J Sports Med, 2018.

Rowers and RED-S

- \uparrow risk for low EA and resulting health consequences of RED-S:
 - cyclical changes in body mass and composition ("making weight")
 - prolonged inadequate energy intake to meet high exercise energy expenditure
 - abrupt changes in training volume/intensity
 - participation in strenuous endurance events without changing nutrition
 - inadequate food availability, including food insecurity from cultural practices or lack of financial resources

Mountjoy M, et al. Br J Sports Med, 2018. Burke LM, et al. Int J Sport Nutr Exerc Metab, 2018.

RED-S

• The medical professional can often spot it, but we need to prove it to the athlete and entourage!

-Signs, symptoms, etc.

 Amenorrhea (low FSH, LH, estradiol), decreased libido, low testosterone, low WBC, low iron/ferritin, low T3, low Vit D, increased LFTs, altered lipids, decreased performance, decreased BMD, low BMI, low fat mass

HIGH RISK: NO START RED LIGHT	MODERATE RISK: CAUTION YELLOW LIGHT	LOW RISK: GREEN LIGHT
 Anorexia nervosa and other serious eating disorders Other serious medical (psychological and physio- logical) conditions related to low energy availability Use of extreme weight loss techniques leading to dehydration induced hemo- dynamic instability and other life threatening conditions. 	 Prolonged abnormally low % body fat measured by DXA* or anthropometry Substantial weight loss (5 – 10 % body mass in one month) Attenuation of expected growth and development in adolescent athlete 	 Appropriate physique that is managed without undue stress or un- healthy diet/ exercise strategies
	- Low **EA of prolonged and/or severe nature	 Healthy eating habits with appropriate EA
	 Abnormal menstrual cycle: functional hypothalamic amenorrhea > 3 months No menarche by age 15y in females 	 Healthy function- ing endocrine system
	 Reduced bone mineral density (either in compari- son to prior DXA or Z-score <-1 SD). History of 1 or more stress fractures associated with hormonal/menstrual dysfunction and/or low EA 	 Healthy bone mineral density as expected for sport, age and ethnicity Healthy musculoskeletal system
- Severe ECG abnormalities (i.e. bradycardia)	 Athletes with physical/ psychological compli- cations related to low EA+/-disordered eating; Diagnostic testing abnor- malities related to low EA +/-disordered eating 	
	 Prolonged relative energy deficiency Disordered eating behavior negatively affecting other team members Lack of progress in treatment and/or non-compliance 	

RED-S CAT

STEPS	RISK MODIFIERS	CRITERIA	RED-S SPECIFIC CRITERIA
STEP 1 Evaluation of Health Status	MEDICAL FACTORS	 Patient Demo- graphics Symptoms Medical History Signs Diagnostic Tests Psychological Health Potential Seriousness 	 Age, sex See Yellow Light column in RED-S Risk assessment model Recurrent dieting, menstrual health, bone health Weight loss/fluctuations, weakness Hormones, electrolytes, electrocardiogram, DXA Depression, anxiety, disordered eating/ eating disorder Abnormal hormonal and metabolic function Cardiac arrhythmia Stress fracture
STEP 2 Evaluation of Participation Risk	SPORT RISK MODIFIERS	Type of SportPosition PlayedCompetitive Level	 Weight sensitive, leanness sport Individual vs. team sport Elite vs. recreational
STEP 3 Decision Modification	DECISION MODIFIERS	 Timing and Season Pressure from Athlete External Pressure Conflict of Interest Fear of Litigation 	 In/out of season, travel, environmental factors Mental readiness to compete Coach, team owner, athlete family, sponsors support If restricted from competition

Mountjoy M, et al. Br J Sports Med 2015.

Future Directions

- Studies exploring other health and performance effects of low energy availability in female and male rowers!
- Tracking EA in our rowers and prioritizing fueling
- Studies determining efficacy of RTP Protocols
- Definitive hormonal and other therapy studies for RED-S
- More awareness and prevention programs
- More collaborating with the Aussies!

- and others who want to join us!

THE MICHELI CENTER FOR SPORTS INJURY PREVENTION

THANK YOU!

- Funding: NIH grant 1 UL1 RR025758 & HD060827-01A1, US Army Medical Research W81XWH-15-C-0024, AMSSM Research Grant
- Boston Children's Hospital Sports Medicine and the Female Athlete Program
- Massachusetts General Hospital Sports Endocrine Research Lab
- Dr. Jürgen Steinacker and FISA
- Our Patients and Rowers

Boston Children's Hospital Sports Medicine

THE MICHELI CENTER FOR SPORTS INJURY PREVENTION

THANK YOU and Happy Thanksgiving!

SAVE THE DATE JUNE 6-8, 2019 Babson College, Wellesley, MA

FEMALE ATHLETE CONFERENCE

bostonchildrens.org/femaleathleteconference

Kathryn.ackerman@childrens.harvard.edu

@DrKateAckerman

Boston Children's Hospital Sports Medicine

THE MICHELI CENTER FOR SPORTS INJURY PREVENTION

