

Heat Adaptation

José González-Alonso

Centre for Human Performance, Exercise and Rehabilitation

Brunel University London

Reduced physiological strain during exercise with heat acclimation

Bench stepping 12 steps/min, 4 h at 34°C, 80% relative humidity

Wyndham et al. J Appl Physiol 25: 586-593, 1968

Benefits of aerobic training and heat acclimation on reducing physiological strain and improving endurance performance in the heat

Treadmill walking, 30-35% $\dot{V}O_{2max}$ in 6 young women

Cohen & Gisolfi. Med Sci Sports Exerc 14: 46-52, 1982

Improved time trial performance with heat acclimation in trained cyclists

Racinais et al. Med Sci Sports Exerc 14:46-52, 2015

Time trial responses of trained cyclists

Mariahlaa		Heat acclimation			
Variables	Control	Day 1	Day 6	Day 14	
Final T _{re} , °C	38.5±0.6	40.2±0.4*	40.2±0.4*	40.1±0.4*	
$HR_{mean,}$ beats/min	166±2	173±1*	170±3*	172±4*	
Power output _{mean} , W	304±9	256±19*	280±19*	294±15	
Time (min)	66±3	77±6*	69±4*	66±5	

Mean±SD; n = 9; VO_{2max} 4.8 L/min; 62 mL/kg/min; 13-15 h training per week

Racinais et al. Med Sci Sports Exerc 14:46-52, 2015

Heat acclimation (5 days) and 2 km rowing performance

DEHydration Acclimation

90-min rowing $T_a = 40^{\circ}C$, 60% rh N = 9 rowers $VO_{2max} = 66 \text{ mL/kg/min}$

Tokyo 2020 30°C and ≥ 60% rh

Brunel University London

Garret et al. Eur J Appl Physiol 112:1827-1837, 2012

What determines maximal endurance performance?

Cerebral circulation

Heart circulation

Respiratory muscle circulation

Skeletal muscle circulation

Classic fatigue paradigm: energy provision vs. energy utilization

Archibald Vivian Hill (1886 – 1977) shared the 1922 Nobel Prize in Physiology or Medicine for his elucidation of the production of heat and mechanical work in muscles.

Compromised VO_{2max} during maximal endurance exercise

		Ohm's law		
Fick principle		Pressure MAP II		AND
	[.] ∀O ₂ =	Flow (CO)	x a-⊽O ₂ diff	
•		Х		
		Resistance TPR		

Determinants of the O₂ transport and utilization chain according to the Fick Principle

Organ Systems and Pathways in O₂ Uptake Process [Convection (Delivery), Release, Diffusion, and Use]

$\dot{V}O_2 = CO \times (C_aO_2 - C_vO_2)$

Modified from Gauzzi et al. J Am Coll Cardiol 70: 1618-1636, 2017

Impaired blood flow during maximal aerobic exercise

Brunel University London

González-Alonso & Calbet *Circulation* 107: 824-830, 2003

Metabolic impact of lower muscle blood flow

Leg $\dot{V}O_2$? = leg blood flow $x (C_aO_2 - C_{fv}O_2)$?

Active muscle metabolism is compromised during maximal endurance exercise

González-Alonso & Calbet Circulation 107: 824-830, 2003

Limitations in cardiac output during constant load vs. incremental maximal endurance exercise

Plateau in locomotor limb blood flow during maximal cycling by not during maximal kneeextensor exercise

Mortensen et al. J Physiol 586: 2621-2635, 2008

Restrictions in systemic and locomotor limb blood flow during maximal endurance exercise

Mortensen et al. J Physiol 586: 2621-2635, 2008

The respiratory muscle circulation

Brunel University London

Reduced respiratory muscle blood flow during maximal endurance exercise

Vogiatzis et al. J Physiol 587: 3665-3677, 2009

The heart circulation

Stroke volume declines during maximal endurance exercise

Heart circulation

Kaijser & Kanstrup. Exercise & Circulation In Health and Disease, 1999.

Does heart rate limit human cardiovascular capacity? Insight from heart pacing studies

Munch et al . J Physiol 592: 377-390, 2014

Heart rate does not limit cardiovascular or aerobic capacity

Munch et al . J Physiol 592: 377-390, 2014

Cardiac output and locomotor limb blood flow are unaffected by HR pacing

Myocardial VO₂ is not limiting maximal endurance perfomance

Brunel University London

Munch et al . J Physiol 592: 377-390, 2014

What is the impact on the human brain circulation and metabolism?

Arterial and venous brain circulation

Modified from Willie et al. J Physiol 592: 841-859, 2014

Brain flow limitations during maximal endurance exercise

Brunel University London

González-Alonso et al. J Physiol 557: 331-342, 2004

Dehydration accelerates the reductions in brain perfusion during maximal endurance exercise

Trangmar et al. J Physiol 592: 3143-3160, 2014

Maintained brain VO₂ during maximal endurance exercise

Trangmar et al. J Physiol 592: 3143-3160, 2014

Brief heat stress does not impair aerobic exercise performance

What are the physiological determinants of maximal endurance exercise?

Nybo et al. J Appl Physiol 90:1057-1064, 2001

Physiological determinants of maximal endurance exercise

Conclusions

- Heat acclimation confers beneficial physiological and performance effects.
- The effects of heat acclimation are relatively small in elite athletes.
- The impact of heat stress on performance depends on the duration of heat exposure, particularly on whether internal body hyperthermia is present at the start of competition.
- To optimise performance in the heat, elite rowers/athletes should start maximal endurance performance competitions in a euhydrated and normothermic condition.

Thank you for your attention

estions

2018 world rowing

Sports Medicine and Science Conference Berlin, Germany