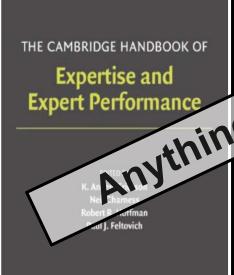
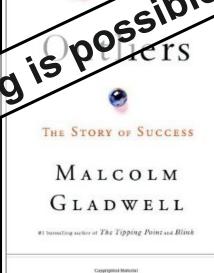

Understand training? Integrating molecular, behavioral and environmental aspects

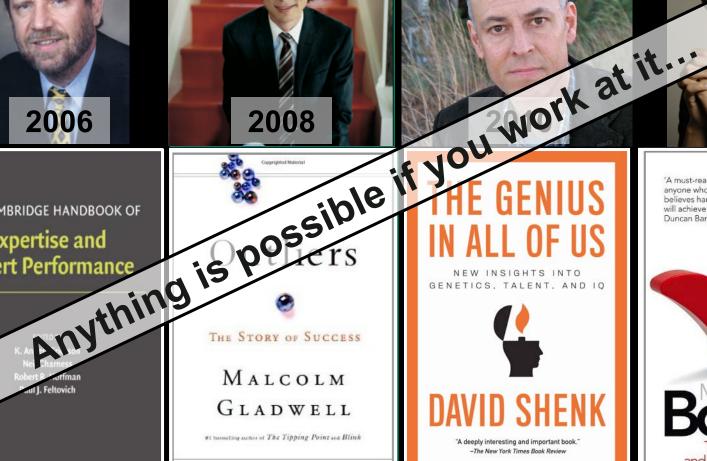
Yannis Pitsiladis, MMedSci., PhD, FACSM

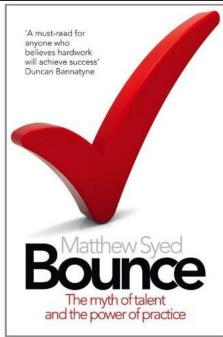
Professor of Sport and Exercise Science University of Brighton and University of Rome "Foro Italico"

The Scientific Basis of Training


"The genetic talent myth and the power of practice"







The Role of Deliberate Practice in the Acquisition of Expert Performance

K. Anders Ericsson, Ralf Th. Krampe, and Clemens Tesch-Romer


The theoretical framework presented in this article explains expert performance as the end result of individuals' prolonged efforts to improve performance while negotiating motivational and external constraints. In most domains of expertise, individuals begin in their childhood a regimen of effortful activities (deliberate practice) designed to optimize improvement. Individual differences, even among elite performers, are closely related to assessed amounts of deliberate practice. Many characteristics once believed to reflect innate talent are actually the result of intense practice extended for a minimum of 10 years. Analysis of expert performance provides unique evidence on the potential and limits of extreme environmental adaptation and learning.

"....practice is both necessary and sufficient for the attainment of deliberate performance, and is effective because it selectively activates dormant genes that are contained within all healthy individuals' DNA".

2011-12 Program Committee

Janet Walberg Rankin, Ph.D., FACSM, Chair Barbara Ainsworth, Ph.D., M.P.H., FACSM Thomas Best, M.D., Ph.D., FACSM Steven N. Blair, P.E.D., FACSM Janet Buckworth, Ph.D., FACSM. Lisa Chasan-Taber, Sc.D., FACSM Priscilla M. Clarkson, Ph.D., FACSM J. Richard Coast, Ph.D., FACSM Irene Davis, Ph.D., FACSM Carol Ewing Garber, Ph.D., FACSM Carl Foster, Ph.D., FACSM Janet Fulton, Ph.D., FACSM L. Bruce Gladden, Ph.D., FACSM Craig A. Harms, Ph.D., FACSM Sandra Hoffmann, M.D., FACSM Carrie A. Jaworski, M.D., FACSM Elizabeth Joy, M.D., M.P.H., FACSM Jill A. Kanaley, Ph.D., FACSM Steven Ketevian, Ph.D., FACSM Benjamin Levine, M.D., FACSM Melinda M. Manore, Ph.D., FACSM Scott J. Montain, Ph.D., FACSM Michael Pratt, M.D., FACSM Jack Raglin, Ph.D., FACSM Eric S. Rawson, Ph.D., FACSM. William O. Roberts, M.D., FACSM Nancy Rodriguez, Ph.D., FACSM James Sallis, Ph.D., FACSM Robert E. Sallis, M.D., FACSM James Skinner, Ph.D., FACSM Andrew J. Young, Ph.D., FACSM

American College of Sports Medicine 59th Annual Meeting and 3rd World Congress on Exercise is Medicine®

> May 29-June 2, 2012 San Francisco, California acsmannualmeeting.org

E-08 Special Event - The Genetics Talent Myt Genetic Talent & The Myth of The The 10,000 Hour Rule

tude Bouchard, FACSM. Pennington Biomedical Research Ctr.,

Baton Rouge, LA.

(C. Bouchard: Consulting Fee; Weight Watchers International, Pathway Genomics.)

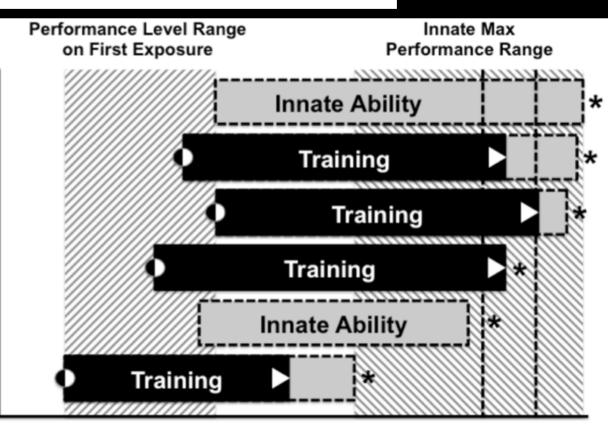
11:00 AM - 11:30 AM Overall Discussion

Why nature prevails over nurture in the making of the elite athlete

Vina Georgiades¹, Vassilis Klissouras², Jamie Baulch³, Guar Vicing and Yarnis Pitsiladis^{4,5*}

34th FIMS World Sports Medicine Congress
1a, Slovenia. 29th September – 2nd October 2016

influence of nature (genes) and Sports Medicine Congress
1be influence of nature (genes) and Sports Medicine Congress
1be influence of nature (genes) and Sports Medicine Congress
1be influence of nature (genes) and Sports Medicine Congress
1be influence of nature (genes) and Sports Medicine Congress
1be influence of nature (genes) and Sports Medicine Congress
1be influence of nature (genes) and Sports Medicine Congress
1be influence of nature (genes) and Sports Medicine Congress
1be influence of nature (genes) and Sports Medicine Congress
1be influence of nature (genes) and Sports Medicine Congress
1be influence of nature (genes) and Sports Medicine Congress
1be influence of nature (genes) and Sports Medicine Congress
1be influence of nature (genes) and Sports Medicine Congress
1be influence of nature (genes) and Sports Medicine Congress
1be influence of nature (genes) and Sports Medicine Congress
1be influence of nature (genes) and Sports Medicine Congress
1be influence of nature (genes) and Sports Medicine Congress
1be influence of nature (genes) and Sports Medicine Congress
1be influence of nature (genes) and Sports Medicine Congress
1be influence of nature (genes) and Sports Medicine Congress
1be influence of nature (genes) and Sports Medicine Congress
1be influence of nature (genes) and Sports Medicine Congress
1be influence of nature (genes) and Sports Medicine Congress
1be influence of nature (genes) and Sports Medicine Congress
1be influence of nature (genes) and Sports Medicine Congress
1be influence of nature (genes) and Sports Medicine Congress
1be influence of nature (genes) and Sports Medicine Congress
1be influence of nature (genes) and Sports Medicine Congress
1be influence of nature (genes) and Sports Medicine Congress
1be influence of ne die wranting e' then hor The prevailing view today is elite human performance will require the deciphering of two major sources of individual differ environment. It is widely accepted that superior performers are endowed with a high ge falised through hard and prodigious effort. Heritability studies using the twin model have provided angle genetic and environmental factors that contribute to complex human traits and have pay detection of specific genes for elite sport performance. Yet, the heritability for most performance is above 50% but below 100%, meaning that the environment is also phenotypes es differences can potentially also be explained not only by the impact of DNA sequence important. laviour, but also by the effects of epigenetic changes which affect phenotype by modifying complexity, the overwhelming and accumulating evidence, amounted through experimental two centuries, tips the balance in favour of nature in the "nature" and "nurture" debate. In other athletes are built - but only from those born with innate ability.


ure, Nurture, Genes, Twin studies, Heritability, Trainability, Sport performance

What makes champions? A review of the relative contribution of genes and training to sporting success

Tucker R, Collins M. Br J Sports Med (2012). doi:10.1136/bjsports-2011-090548

Individual

Performance

Current Elite Performance Threshold Current World Record

BMC Genomics

COMMENTARY

Why nature prevails over no making of the elite athlete

Evelina Georgiades¹, Vassilis Klissouras², Jamie Baulch³, Guan W

From 34th FIMS World Sports Medicine Congress Ljubljana, Slovenia. 29th September – 2nd October 2016

Abstract

While the influence of nature (genes) and nurture (environment precisely determine, the dismissal of either as a contributing fact that a complex interaction of a combination of innumerable fact. The prevailing view today is that understanding elite human persources of individual differences, genes and the environment. It endowed with a high genetic potential actualised through hard an model have provided the basis to disentangle genetic and environ traits and have paved the way to the detection of specific genes for phenotypes essential to elite human performance is above 50% but important. Furthermore, individual differences can potentially also be variation on biology and behaviour, but also by the effects of epige gene expression. Despite this complexity, the overwhelming and accordinate research spanning almost two centuries, tips the balance in favour of words, truly elite-level athletes are built – but only from those born words.

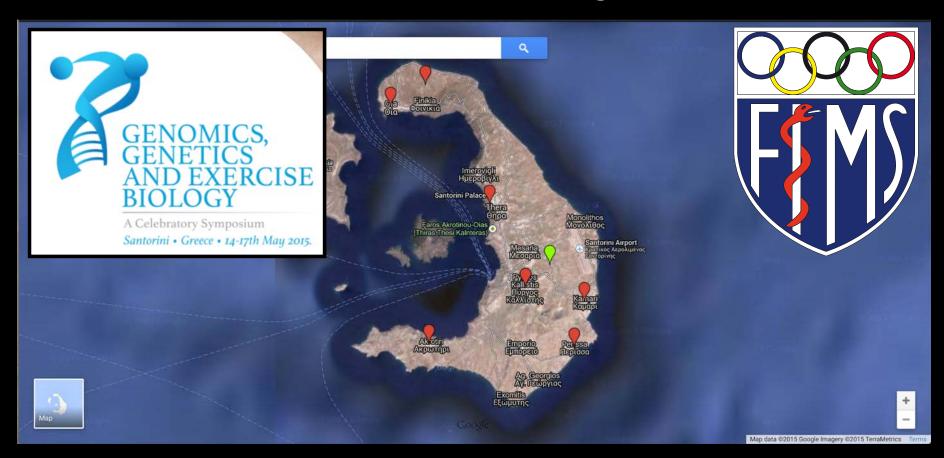

Keywords: Nature, Nurture, Genes, Twin studies, Heritability, Trainabi

Table 1 Som	ie key miles	stones in ger	nomics, gene	tics, and
exercise biolo	gy			

- 1971 Vassilis Klissouras/Twin Studies of VO₂ max [17]
- 1984 Claude Bouchard/Twin Studies of trainability of VO₂ max [43]
- 1999 Claude Bouchard/Heritage Family Study [44]
- 2000 Hugh Montgomery/Candidate Gene Approach ACE [49]
- 2001 The Human Genome Project Initial sequencing and analysis of the human genome (http://web.ornl.gov/sci/techresources/ Human_Genome/index.shtml)
- 2003 The ENCODE Project large public research consortium aimed at identifying all functional elements in the human genome sequence (www.encodeprojectorg)
- 2003 Kathy North/ACTN3 Speed Gene [50]
- 2007 Yannis Pitsiladis/Genetics of East African Runners [45]
- 2008 The 1000 Genomes Project the largest public catalogue containing human variation and genotype data (www.internationalgenome.org)
- 2016 GAMES/The first GWAS of athletic performance [52]
- 2016 The Athlome Project call for international collaborated efforts in genetic discovery for elite human performance, muscle injury prevention and adaptive training [53]

^{*}see Bouchard and Malina, 2014 [66] for a detailed account of the history of genomics, genetics, and exercise biology

Athlome Project

Direct-to-consumer genetic testing for predicting sports performance and talent identification: Consensus statement

National and Kapodistrian University of Athens

Current genetic testing not be used by athletes?

Supporting Organisations

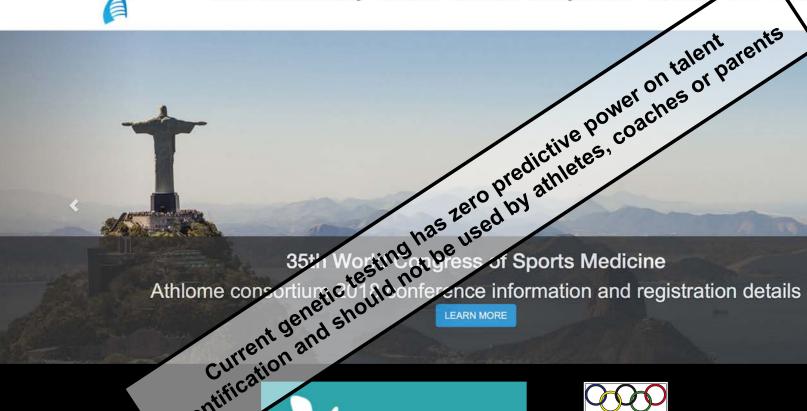
(From Theory to Practice...)

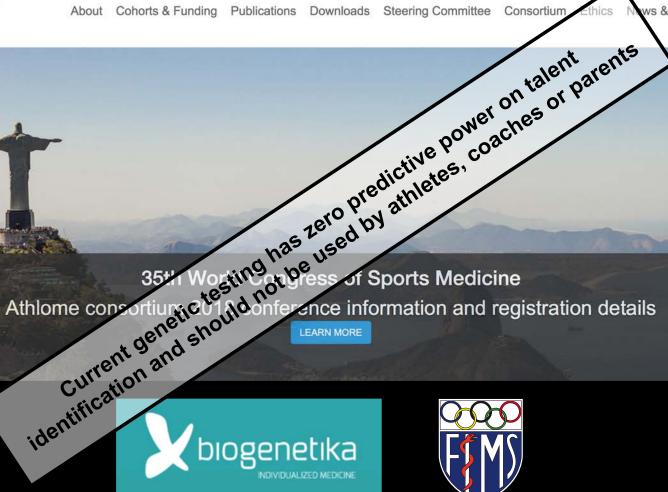
29 SEPTEMBER - 2 OCTOBER 2016 LJUBLJANA / SLOVENIA

Genetic testing for exercise prescription and injury prevention: AIS-Athlome consortium-FIMS joint statement

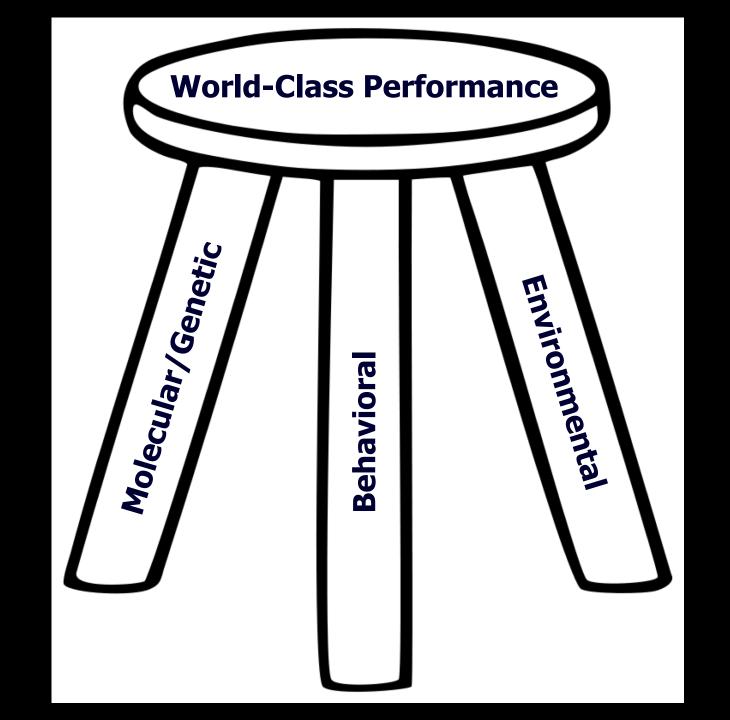
CrossMark

Nicole Vlahovich¹, David C. Hughes^{1,8}, Lyn R. Griffiths², Guan Wang³ Nobert Bachl^{5,6} and Nir Eynon^{7*}


From 34th FIMS World Sports Medicine Congress Liubliana, Slovenia. 29th September – 2nd October 2016.


Abstract

knowledge and understanding of how genes are Background: There has been osition to injuries and chronic diseases. On the basis of this influencing response to e allow the personalisation and optimisation of physical activity, knowledge, clinical ge thus providing ar


of the current status of genetic testing for the purposes of exercise with participation in sport and understanding individual response to particular practical applications, including adoption of international standards for genomics research, as well as resistance against the agendas driven by direct-to-consumer genetic testing companies. Here we propose a way forward to develop an evidence-based approach to support genetic testing for exercise prescription and injury prevention.

Conclusion: Based on current knowledge, there is no current clinical application for genetic testing in the area of exercise prescription and injury prevention, however the necessary steps are outlined for the development of evidence-based clinical applications involving genetic testing.

Which R program is best?

How to individualize training?

Very High Responders

Laboratory 1900s

AV Hill and Otto Meyerhof (1922)

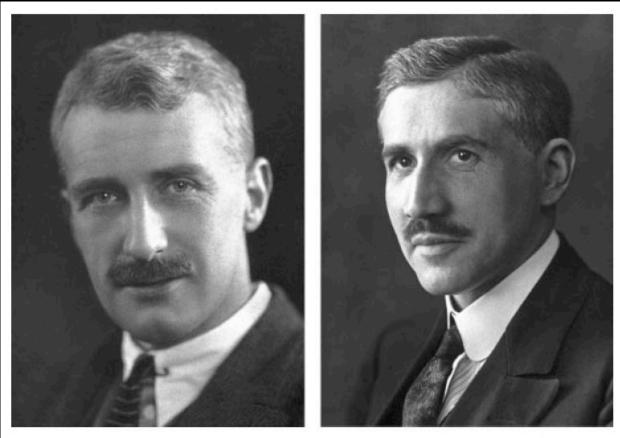
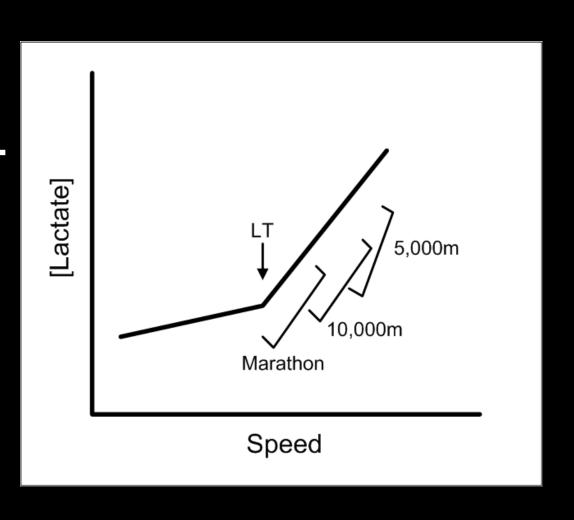
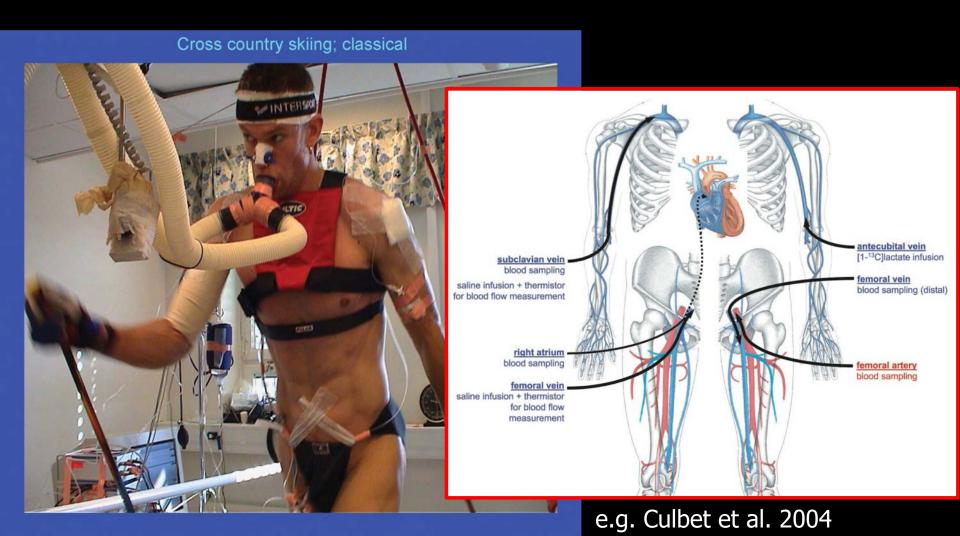



Fig. 2. Archibald V. Hill (*left*) and Otto Meyerhof (*right*). Figures borrowed with permission of the Nobel Foundation.

Lactate: Friend not foe and implications for training and performance

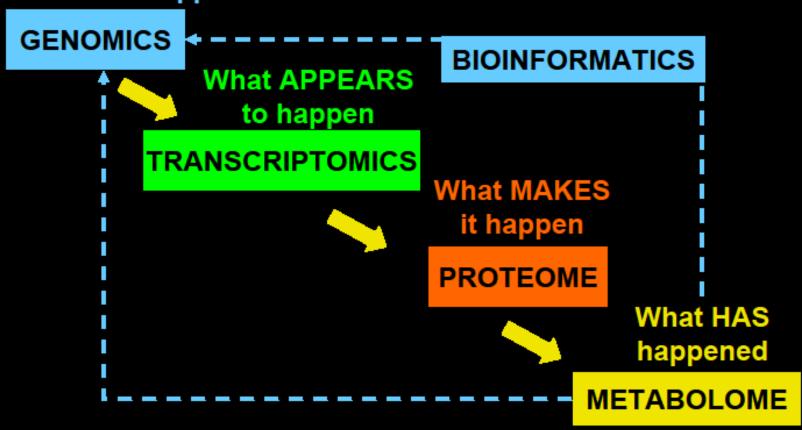
Measure of fatigue but NOT the cause of fatigue and ... a measure of training intensity

Indoor testing



(Slide courtesy of Jamie Pringle, EIS)

(Slide courtesy of Jamie Pringle, EIS)

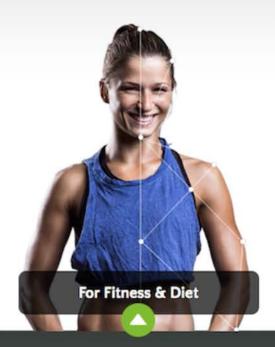


Modern (Research) Laboratory

The "Omics" Cascade

What CAN happen

PHENOTYPE



Let's talk about you.

Our groundbreaking DNA test will change the way you think about fitness and nutrition forever.

DNAFit[®]

Whether you're looking to shape up, build muscle or just want to eat a little healthier, your genetics hold valuable information about the best way to do this, just for you.

We help you nurture your nature. Using our extensive experience in elite sports performance, we help you be the best you can be with unique genetic insights.

We believe there is no such thing as a 'one size fits all'approach. Long-term vitality and wellbeing should be personal, not general - we help guide this with our simple saliva swab.

FIND OUT MORE

FIND OUT MORE

FIND OUT MORE

Letter to the Editor

DOI: 10.5114/biolsport.2017.63385

Biol. Sport 2017;34:31-33

Letter to the editor: A genetic-based algorithm for personalized resistance training

AUTHORS: Karanikolou A, Wang G, Pitsiladis Y

University of Brighton, Eastbourne BN20 7SN, United Kingdom

ABSTRACT: In a recent paper entitled "A genetic-based algorithm for personalized resistance training", Jones et al. [1] presented an algorithm of 15 performance-associated gene polymorphisms that they propose can determine an athlete's training response by predicting power and endurance potential. However, from the design of their studies and the data provided, there is no evidence to support these authors' assertions. Progress towards such a significant development in the field of sport and exercise genomics will require a paradigm shift in line with recent recommendations for international collaborations such as the Athlome Project (see www.athlomeconsortium.org). Large-scale initiatives, involving numerous multi-centre and well-phenotyped exercise training and elite performance cohorts, will be necessary before attempting to derive and replicate training and/or performance algorithms.

CITATION: Karanikolou A, Wang G, Pitsiladis Y. Letter to the editor: A genetic-based algorithm for personalized resistance training. Biol Sport. 2017;34(1):31–33.

Received: 2016-07-28; Accepted: 2016-09-04; Published: 2016-11-11.

Corresponding author:

Yannis Pitsiladis

University of Brighton, Eastbourne BN20 7SN, United Kingdom

E-mail: Y.Pitsiladis@brighton.ac.uk

Key words:

Genetic polymorphism Personalised training Athletes Talent identification Athletic performance Sport > Football > International

Meet the former British Olympian using gene mapping to find the next Mo Salah

Exclusive interview: Despite genetic testing being in its relatively early stages, former sprinter Craig Pickering is in no doubt that it represents the next leap forward in professional sport

Richard Edwards | Wednesday 21 March 2018 12:24 GMT | 2 comments

INDEPENDENT

14 JUNE - 15 JULY

_										
o Salah	Pos	Team [v·⊤·∈	Pld	w	D	L	GF	GA	GD	Pts
former sprinter ssional sport	1	<u>■</u> Uruguay	3	3	0	0	5	0	+5	9
	2	Russia (H)	3	2	0	1	8	4	+4	6
Click to follow The Independent Spo	3	Saudi Arabia	3	1	0	2	2	7	-5	3
	4	Egypt	3	0	0	3	2	6	-4	0
	ort									

Craig Pickering, the former British sprinter Theal of Sports Science at DNAFit and he tells *Ipdep Adapsport* that the genetic detail unearthed on Salah and his team hates can play a critical role in ensuring that when Estate begin their World Cup campaign against Uruguay of June 15 after te in the best shape imaginable.

Pickering knows what it takes to succeed at the highest level of sport (Getty)

SPORT

Technology Intelligence

Big Tech | Start-ups | Innovation | Politics of Tech | Gadgets | Flash briefing | Podcast | Newsletter sign-up

♠ Technology Intelligence

Genetic testing boom continues as UK start-up DNAFit sold for \$10m

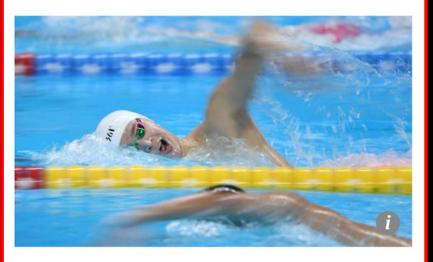
By James Titcomb

17 APRIL 2018 • 12:01AM

London-based company has cashed in on the boom in DNAtesting kits by selling itself to a Hong Kong firm backed by Alibaba.

2

Prenetics, which the Chinese internet retail behemoth invested in last year, has paid \$10m (£7m) to acquire DNAFit, a five-year-old company that sells tests designed to determine a person's suitability to different diets and exercise regimes.


The company sells the tests online and through employee benefits schemes for up to £249, and has sold tens of thousands of the kits.

Olympic Selection using NGS

Athletes with the potential to represent the country in the Games will have to undergo whole genome sequencing, the process that determines a person's complete, unique DNA profile.

"Complete genome sequencing will be applied on outstanding athletes competing in the winter games for speed, endurance and explosive force, with at least 300 athletes in each group," said the document, jointly drafted by the ministry, the Beijing Organising Committee for the 2022 Olympic and Paralympic Winter Games, and other government agencies earlier this year.

The large-scale genetic profiling, screening and analysis work will be carried out by the General Administration of Sport of China, the Ministry of Education and the Chinese Academy of Sciences from now through 2020.

The project's budget has not been disclosed.

Athletes are usually selected through competitions and trials and there have been no reports of other countries using similar genetic testing for their sportsmen, though some are conducting research on similar topics.

Effective new technologies ...

REVIEW

Nature (2017) | doi:10.1038/nature24286

Received 13 July 2017 | Accepted 21 September 2017 | Published online 11 October 2017

doi:10.1038/nature24286

DNA sequencing at 40: past, present and future

Jay Shendure^{1,2}, Shankar Balasubramanian^{3,4}, George M. Church⁵, Walter Gilbert⁶, Jane Rogers⁷, Jeffery A. Schloss⁸ & Robert H. Waterston¹

This review commemorates the 40th anniversary of DNA sequencing, a period in which we have already witnessed multiple technological revolutions and a growth in scale from a few kilobases to the first human genome, and now to millions of human and a myriad of other genomes. DNA sequencing has been extensively and creatively repurposed, including as a 'counter' for a vast range of molecular phenomena. We predict that in the long view of history, the impact of DNA sequencing will be on a par with that of the microscope.

The Anti-Doping Crisis in Sport

Rio Olympics 2016: Anti-doping system needs complete reform - Thomas Bach

O 2 August 2016 Olympics

Bach claimed a total ban went against "natural justice" for clean Russian athletes

CrossMark

ORIGINAL RESEARCH ARTICLE

Doping in Two Elite Athletics Competitions Assessed by Randomized-Response Surveys

Rolf Ulrich¹ · Harrison G. Pope Jr.^{2,3} · Léa Cléret⁴ · Andrea Petróczi^{5,6} · Tamás Nepusz^{5,7} · Jay Schaffer⁸ · Gen Kanayama^{2,3} · R. Dawn Comstock⁹ · Perikles Simon¹⁰

We utilized a "randomized response technique"—a method that guarantees anonymity for individuals when answering a sensitive question—to estimate the prevalence of past-year doping at two major international athletic events: the 13th International Association of Athletics Federations World Championships in Athletics (WCA) in Daegu, South Korea and the 12th Quadrennial Pan-Arab Games (PAG) in Doha, Qatar, both held in 2011.

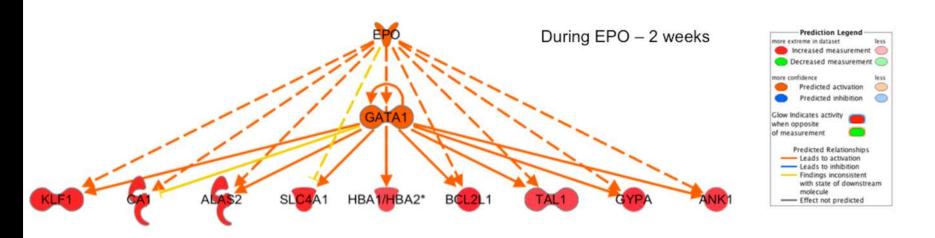
After performing numerous sensitivity analyses, assessing the robustness of our estimates under various hypothetical scenarios of intentional or unintentional noncompliance by respondents, we found that the prevalence of past-year doping was at least 30% at WCA and 45% at PAG.

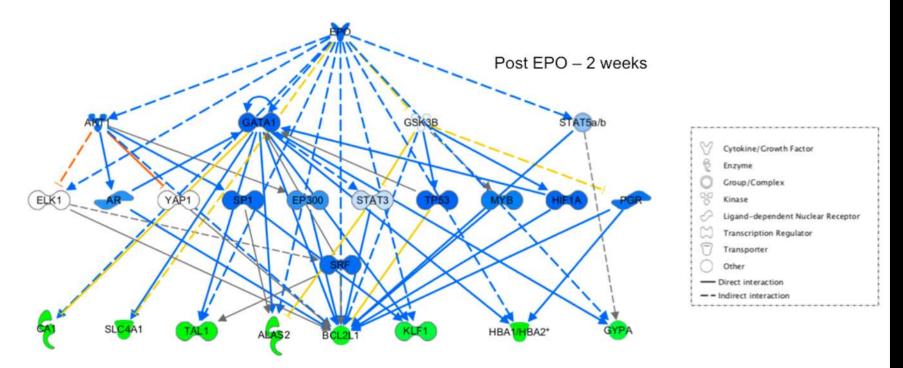
These findings suggest that biological testing greatly underestimates the true prevalence of doping in elite athletics, and indicate the need for future studies of the prevalence of doping in athletics using randomized response techniques.

A paradigm shift is needed

In sport, the cheats are usually a step ahead

Visit illumina




Next Generation Anti-Doping Tests

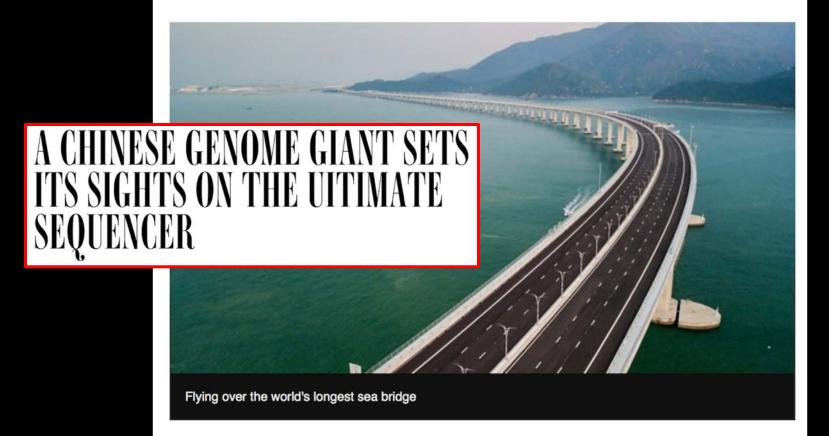
Application	Human Transcriptome Array 2.0, Thermo Fisher Scientific					
Biological replicates		N=10				
Comparison	2 days Epo	2 weeks Epo	2 weeks Epo 2 weeks post Epo			
Transcripts/ genes	67,528	67,528	GeneChip*	67,528		
Criteria	FDR<0.05	FDR<0.05		FDR<0.05		
Significant transcripts/ genes	0	10,705 (3,764↓, 6,941↑)	Fine, Street Co. Fine, Street Co. Fine, Date: Monitories Fine Responses than Gifting	18 (18↓)		

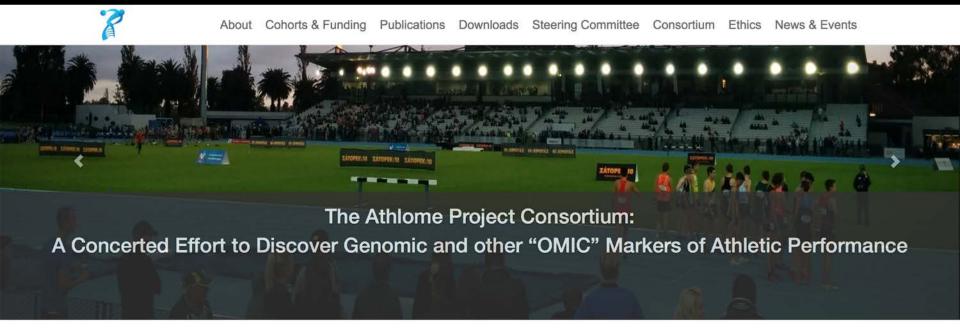
Application	HumanHT-12 v4.0 Expression BeadChip, Illumina					
Biological replicates		N=10				
Comparison	2 days Epo	2 weeks Epo		2 weeks post Epo		
Transcripts/ genes	28,007	28,007		28,007		
Criteria	FDR<0.05	FDR<0.05		FDR<0.05		
Significant transcripts/ genes	1↑	8,162 (4,942↓, 3,220↑)	· nyelice ·	960 (532↓, 428↑)		

Application	RNA-Seq, Illumina					
Biological replicates	N=10					
Comparison	2 days Epo	2 weeks Epo		2 weeks post Epo		
Transcripts/ genes	14,473	14,235	and the second	14,226		
Criteria	FDR<0.05	FDR<0.05		FDR<0.05		
Significant transcripts/ genes	4↑	4,831 (2,167↓, 2,664↑)		2,250 (1,414↓, 836↑)		

World's longest sea crossing: Hong Kong-Zhuhai bridge opens

() 23 October 2018




Chinese President Xi Jinping has officially opened the world's longest sea crossing bridge, nine years after construction first began.

Application	Human Transcriptome Array 2.0, Thermo Fisher Scientific				
Biological replicates	N=10				
Comparison	2 days Epo	2 weeks Epo	2 weeks	post Epo	
Transcripts/ genes	67,528	67,528	GeneChip*	,528	
Criteria	FDR<0.05	FDR<0.05	FDR	FDR<0.05	
Significant transcripts/ genes	0	10,705 (3,764↓, 6,941↑)	the simple for samples and the	18 (18↓)	
Application		HumanHT-12 v4.0 Expression BeadCh	ip, Illumina		
Biological replicates		N=10			
Comparison	2 days Epo	2 weeks Epo	2 weeks	post Epo	
Transcripts/ genes	28,007	28,007	28,	28,007	
Criteria	FDR<0.05	FDR<0.05	FDR FDR	FDR<0.05	
Significant transcripts/ genes	1↑	8,162 (4,942↓, 3,220↑)	960 (53)	960 (532↓, 428↑)	
Application	RNA-Seq, Illumina				
Biological replicates		N=10			
Comparison	2 days Epo	2 weeks Epo	2 weeks	post Epo	
Transcripts/ genes	14,473	14,235	14,	,226	
Criteria	FDR<0.05	FDR<0.05	FDR	<0.05	
Significant transcripts/ genes	4 (3↑, 1↓)	4,831 (2,167↓, 2,664↑)	2,250 (1,4	114↓, 836↑)	
Application		RNA-Seq, BGI			
Biological replicates	N=10				
Comparison	2 days Epo	2 weeks Epo	2 weeks	post Epo	
Transcripts/ genes	-	-		-	
Criteria	FDR<0.05	FDR<0.05	FDR	<0.05	
Significant transcripts/ genes	149 (145↑, 4↓)	4,168 (2,077↓, 2,091↑)	3,332 (1,9 ⁻	17↓, 1,415↑)	

Athlome Project

Current Projects

Publication and summary data on the Athlome consortium now available for download

LEARN MORE

Recent Events

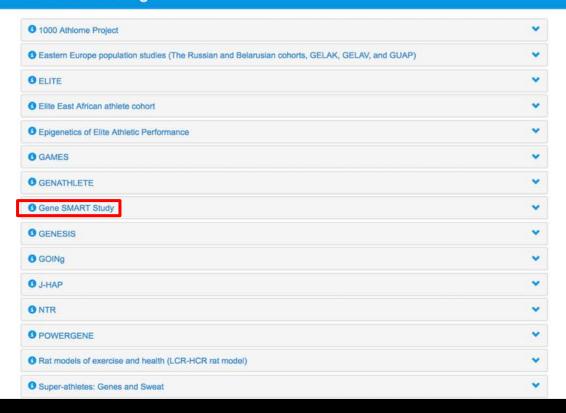
Conference, Symposium and Media links about the Athlome Consortium

LEARN MORE

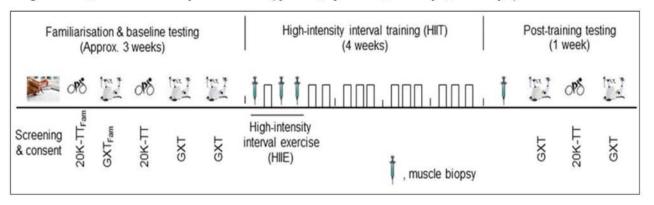
Upcoming Events

Athlome consortium 2016 conference information and registration details

LEARN MORE



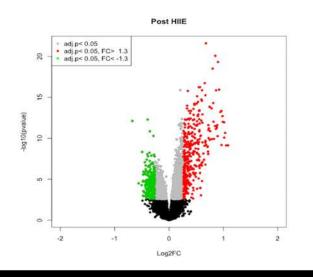
Home > Cohorts & Funding

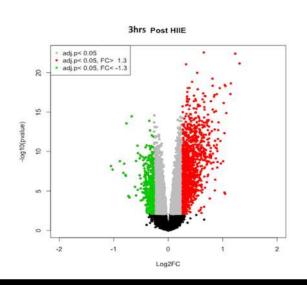

Cohorts & Funding

Study Design

• 41 subjects, 4 time points (pre, post, 3hp, 4wp)

 Whole blood transcriptome analysis using GeneChip[™] HTA 2.0 (Affymetrix, Thermo Fisher Scientific; >285,000 full-length transcripts)

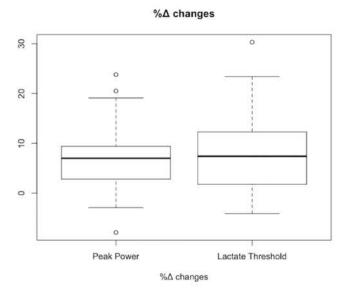

100 E 100 LT 100

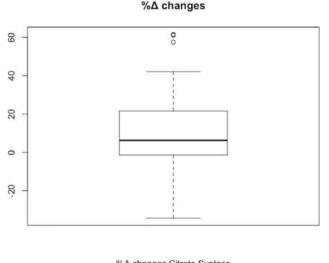

- Data analysis: Bioconductor "oligo" and "limma" packages
- Differentially expressed transcripts were reported at 5% false discovery rate (FDR)

Gene SMART Study

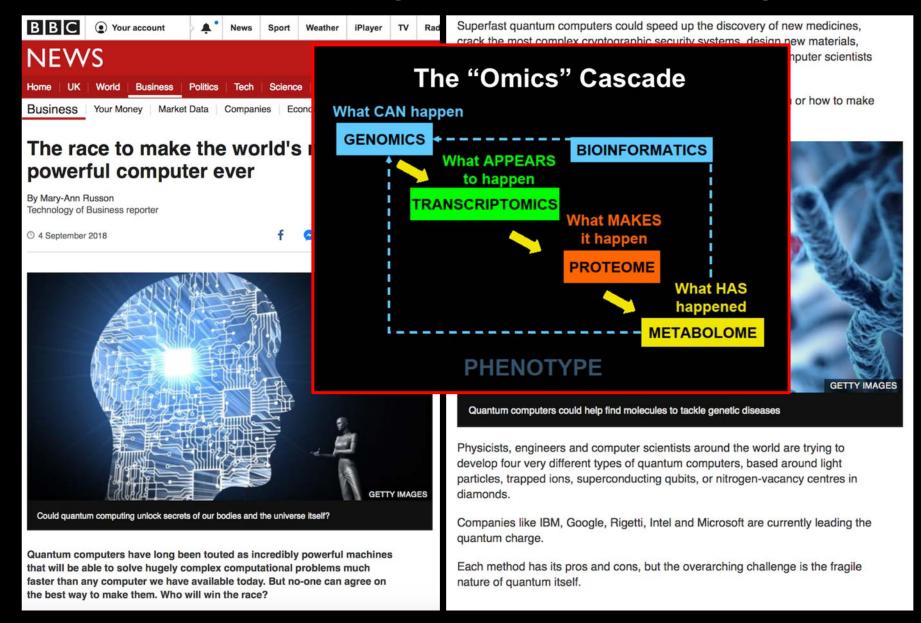
Differentially expressed transcripts

- 3,655 and 11,324 transcripts were differentially expressed immediately and 3hrs post HIIE (adj p value <0.05), respectively
- 1,417 were in common between the 2 time points
- No transcripts were differentially expressed after 4 weeks of HIIT



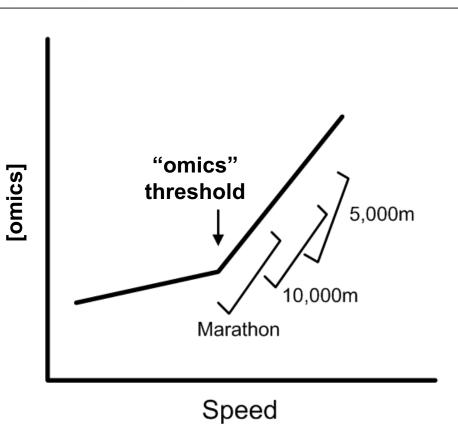


Gene SMART Study


Aerobic adaptation post 4weeks of HIIT

%delta (Δ) changes in Peak Power ranged from -7.9% to 23.8%, in Lactate Threshold (LT) from -4.1% to 30.3% after 4 weeks of HIIT, while the % Δ changes in CS ranged from -34.5% to 61.5%.

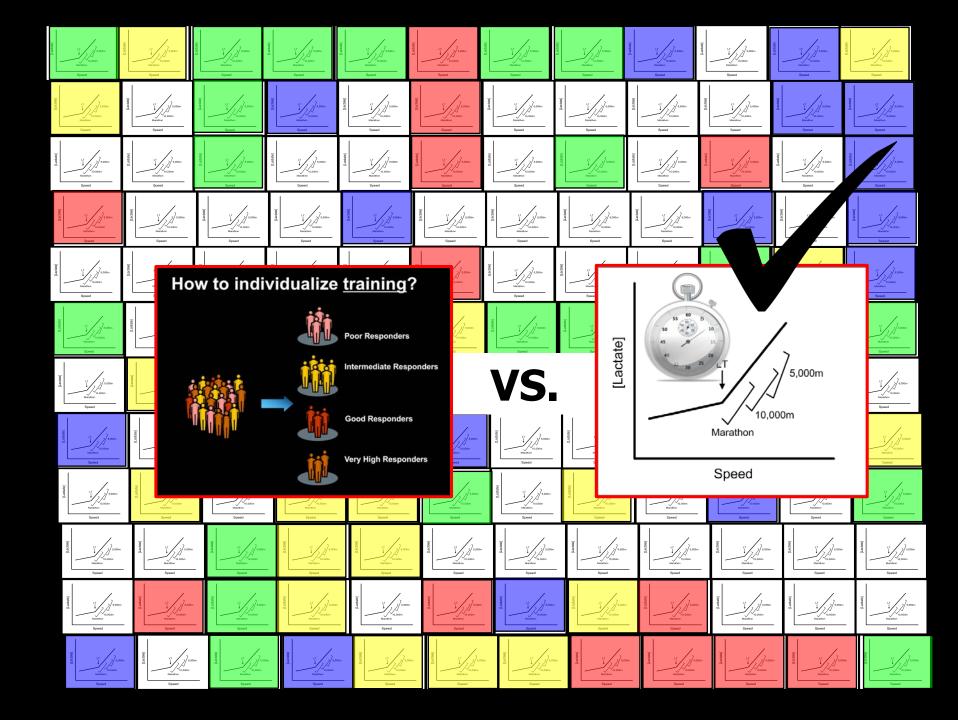
Machine Learning & Artificial Intellegence



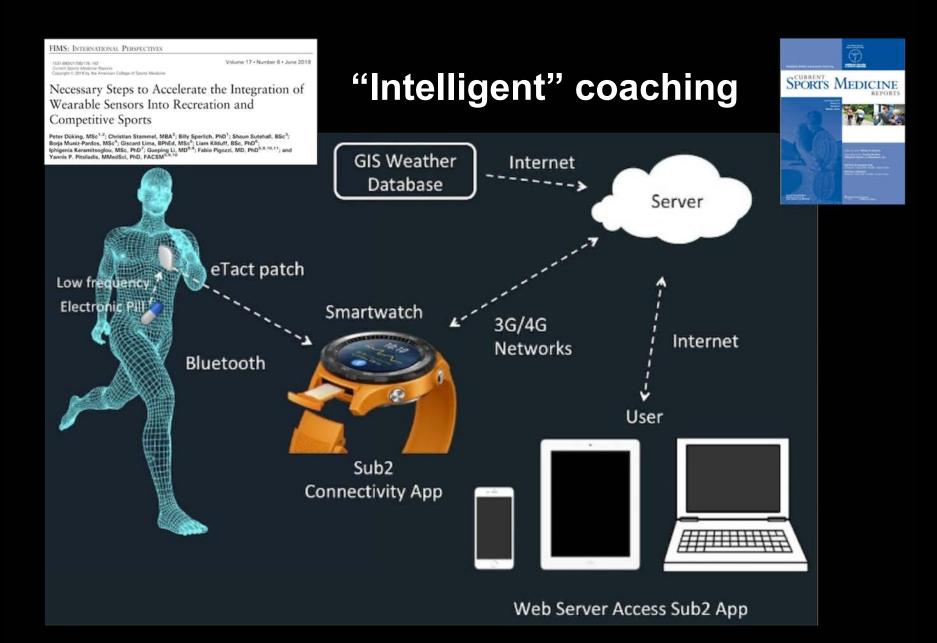
ORIGINAL ARTICLE

Passing the anaerobic threshold is associated with substantial changes in the gene expression profile in white blood cells

Dmitry A. Sakharo Maxim U. Shkurnil Anatoly I. Grigorie


Table S1. Upregulated genes in response to RTE.					
GeneSymbol	EntrealD	P.Value	adj.P.Val		
ABCB1	5243	7.96E-09	4.18E-06		
ADAMTS1	9510	9.74E-05	3.18E-03		
AGK*	55750	1.24E-08	5.83E-06		
AGPAT4*	56895	1.20E-06	1.56E-04		
AKAP5	9495	3.35E-07			
AKRIC3*	8644	4.44E-07	7.28E-05		
ANXA1*	301	3.01E-05			
ARAP2	116984	7.61E-08			
AREG	374	3.64E-09			
ARLaC	10123	4.31E-08	L37E-05		
AUTS2	26053	1.17E-06	7.61E-04		
	8702	3.79E-07			
B4GALT6	9331		1.59E-05		
BNC2	54796	1.83E-05			
BXDC5	80135	5.04E-06			
Clorf21	81563	4.66E-10			
C2orf46	339789	5.41E-08	1.59E-05		
C5orf25	375484	1.96E-06	2.23E-04		
C6orf150	115004	3.89E-07	6.65E-05		
CACYBP	27101	L11E-05	7.34E-04		
CBLB	868	2.23E-08	8.72E-06		
CCL4	6351	5.67E-06	4.73E-04		
CCL4L1	9560	2.96E-09			
CCND2	894	5.21E-08			
CD160	11126	4.87E-07	7.78E-05		
CD226	10666	3.60E-08	1.20E-05		
CD244	51744	2.39E-08			
CD247	919	3.71E-09	2.43E-06		
CD38	952	1.57E-11	1.07E-07		
CD69	969	2.68E-09	2.18E-06		
CEP78	84131	6.06E-11	2.50E-07		
CKS2	1164	7.37E-05	2.62E-03		
CLKI	1195	1.0GE-05	7.30E-04		
CMKLRI	1240	7.99E-10	1.21E-05		
CNOTEL	246175	7.66E-07	1.08E-04		
COG6	57511	8.78E-05	2.96E-03		
COPS4	51138	3.10E-05			
CREM	1390	3.24E-09			
CRIM1	51232	2.14E-08	8.47E-06		
CRISP3	10321	5.61E-05			
CROT*	54677	1.06E-05	7.29E-04		
CRYZ	1429	3.50E-06	3.36E-04		
CS17	8530	5.72E-08	1.65E-05		
CTSW	1521	5.36E-08	1.59E-05		
CX3CR1	1524	1 20E-05	8 Dalland		

GeneSymbol	EntrealD	P.Value	adj.P.Val	FC
TBC1D19	55296	4.82E-06	4.23E-04	1.31
TBX21	30009	1.18E-07	2.79E-05	1.33
TERFI	7013	8.79E-05	2.96E-03	1.32
TFDP2	7029	5.42E-07	8.33E-05	1.45
TGFBR3	7049	1.46E-09	1.61E-06	1.67
TIGIT	201633	3.17E-07	5.91E-05	1.42
TIPARP*	25976	2.95E-07	5.65E-05	1.32
TKTLL	8277	1.31E-06	L65E-04	1.38
TLEL	7088	2.40E-06	2.56E-04	1.33
TLR3	7098	4.50E-06	1.91E-03	1.32
TM4SF19	116211	5.75E-04	L06E-02	1.49
TMEM156	80008	1.21E-06	1.56E-04	1.38
TNFAIP3	7128	6.18E-07	9.14E-05	1.47
TOX	9760	2.08E-08	8,45E-06	1.44
TPT1	7178	L05E-05	7.29E-04	1.33
TRGV7	6981	3.17E-09	2.34E-06	1.49
TRGV9	6983	6.07E-06	4.93E-04	1.53
TSPYL1	7259	3.36E-06	3.28E-04	1.40
TTC38	55020	2.52E-07	5.05E-05	1.33
TXK	7294	2.79E-08	9.95E-06	1.38
UCHLS	51377	7.59E-07	L08E-04	1.31
USP28	57646	8.59E-10	1.24E-06	1.51
WDR67	93594	7.46E-07	1.07E-04	1.34
YES1	7525	3.22E-05	1.53E-03	1.36
YPEL1	29799	1.36E-09	1.61E-06	1.42
ZBTB38	253461	7.25E-08	1.98E-05	1.33
ZNF600	162966	3.41E-07	6.12E-05	1.33
ZNF721	170960	9.08E-04	L46E-02	1.31
ZNF841	284371	1.06E-05	7.30E-04	1.31
ZNF91 adi.P.Val — ad	7644 Susted p-va	2.36E-04		1.36 fold char


*Genes involved in lipid metabolic process (GO:0006629).

rexID	P.Value	adj.P.Val	FC	GeneSymbol	EntrexID	P.Value	adj.P.Val	FC
5	4.41E-07	7.27E-05	1.31	SNORA4	619568	6.32E-06	5.09E-04	1.54
628	1.05E-09	1.38E-06	1.51	SNORA40	677822	1.10E-05	7.34×04	1.39
1	2.07E-07	4.33E-05	1.34	SNORA49	677829	2.02E-05	1.11E-03	1.57
020	5.34E-08	1.59E-05	1.42	SNORA61	677838	5.08E-07	7.97E-05	1.50
7	3.86E-06	3.59E-04	1.38	SNORA68	26780	2.01E-05	1.10E-03	1.49
36	5.13E-08	1.59E-05	1.43	SNORA8	654320	2.58E-07	5.13E-05	1.43
41	5.98E-10	1.12E-06	1.40	SNORD104	692227	4.06E-04	8.35E-03	1.38
470	3.97E-05	1.75E-03	1.34	SNORD15B	114599	9.81E-05	3.18E-03	1.45
6	3.22E-03	3.54E-02	1.45	SNORD26	9302	2.08E-06	2.31E-04	1.42
35	1.24E-03	1.80E-02	1.34	SNORD28	9300	4.64E-06	4.11E-04	1.53
34	9.88E-05	3.18E-03	1.89	SNORD29	9297	2.44E-04	5.88E-03	1.38
29	3.78E-06	3.53E-04	1.78	SNORD32A	26819	1.37E-04	4.01E-03	1.36
5	1.07E-08	5.26E-06	1.34	SNORD34	26817	1.63E-06	1.94E-04	1.46
3	3.44E-03	3.70E - 02	1.42	SNORD35A	26816	9.80E-07	1.32E-04	1.33
2 5	4.11E-03	4.20×02	1.33	SNORD41	26810	5.70E-06	4.73E-04	1.45
	3.36E-05	1.58E-03	1.35	SNORD46	94161	2.47E-05	1.27E-03	1.37
9	5.01E-03	4.82E-02	1.34	SNORD49A	26800	4.97E-06	4.32E-04	1.39
075	3.09E-08	1.09E-05	1.54	SNORD4B	26772	5.35E-07	8.25E-05	1.51
9	4.97E-05	2.03E-03	1.34	SNORDS	692072	5.86E-07	8.77E-05	1.41
148	6.95E-06	5.48E-04	1.71	SNORD50A	26799	3.06E-03	3.43E-02	1.38
768	1.35E-03	1.92E-02	1.31	SNORD54	26795	1.59E-04	4.42E-03	1.37
775	5.07E-06	4.33E-04	1.40	SNORD57	26792	6.55E-06	5.20E-04	1.31
772	9.94E-06	7.02E-04	1.49	SNORD58A	26791	4.86E-05	2.00E-03	1.47
767	2.28E-04	5.66E-03	1.40	SNORD6	692075	1.50E-05	9.02E-04	1.31
8	1.77E-05	1.02E-03	1.42	SNORD60	26788	3.70E-06	3.48E-04	1.59
157	2.88E-12	2.77E-08	2.00	SNORD61	26787	2.42E-04	5.88E-03	1.32
7	1.93E-07	4.17E-05	1.47	SNORD63	26785	4.38E-06	3.95E-04	1.38
74	1.23E-06	1.58E-04	1.41	SNORD68	606500	4.87E-04	9.42E-03	1.32
836	2.13E-06	2.35E-04	1.35	SNORD74	619498	2.98E-07	5.67E-05	1.36
23	4.21E-08	1.35E-05	1.51	SNORD76	692196	1.01E-03	1.58E-02	1.41
4	7.02E-09	3.82E-06	1.32	SNORD78	692198	1.36E-03	1.93E-02	1.33
512	1.55E-06	1.86E-04	1.41	SNORD8	319103	5.67E-05	2.22E-03	1.44
69	2.31E-06	2.48E-04	1.38	SNORD80	26774	1.32E-03	1.88E-02	1.39
82	5.30E-07	8.22E-05	1.37	SNORD82	25826	1.47E-04	4.18E-03	1.47
1	1.06E-05	7.29E-04	1.47	SNORD94	692225	1.51E-04	4.25E-03	1.49
615	3.48E-06	3.35E-04	1.30	SNRPN	6638	3.96E-03	4.09E-02	1.40
857	2.70E-06	2.79E-04	1.42	SPN	6693	3.90E-06	3.61E-04	1.34
792	4.45E-06	4.00E-04	1.50	SPON2	10417	3.38E-07	6.11E-05	1.61
801	1.97E-04	5.13E-03	1.39	ST8SIA6*	338596	1.34E-06	1.67E-04	1.67
806	1.56E-07	3.55E-05	2.21	STARD4	134429	2.43E-06	2.57E-04	1.36
505	4.68E-05	1.95E-03	1.41	STAT4	6775	6.59E-09	3.73E-06	1.42
807	2.70E-07	5.28E-05	1.62	STK39	27347	1.57E-07	3.55E-05	1.33
808	5.74E-05	2.22E-03	1.72	SYNE1	23345	2.64E-06	2.74E-04	1.36
809	2.15E-06	2.35E-04	1.51	SYT11	23208	5.05E-07	7.97E-05	1.37
811	5.20E-05	2.09E-03	1.34	SYTL2	54843	7.16E-08	1.98E-05	1.56
812	3.79E-06	3.53E-04	1.49	SYTL3	94120	2.54E-08	9.30E-06	1.39
562	2.90E-04	6.60E-03	1.38	TARP	445347	1.54E-08	6.49E-06	1.58

The Scientific Basis of Training

e-Celsius® Performance

e-Celsius Performance[®], is a miniaturised ingestible electronic pill that wirelessly transmits a continuous measurement of gastrointestinal temperature.

The data are stored on a monitor called e-Viewer Performance®. This device shows alerts if the measurement is outside the desired range. The activation box is used to turn the pill on from standby mode and connect with the

monitor for data collection in either real time or by recovery from the internal memory of e-Celsius Performance®. Each monitor can be used with up to three pills at

e-Celsius Performance®pill

Storage: Up to one year Weight: 1.7g

Size: 17.7mm x 8.9 mm

Sampling: 30s Accuracy: 0.2°C

Operational range: 25°C to 45°C

Records up to 2000 data

Wireless transmission (433 MHz)

Communication range: 1 m

Operational duration: 20 days

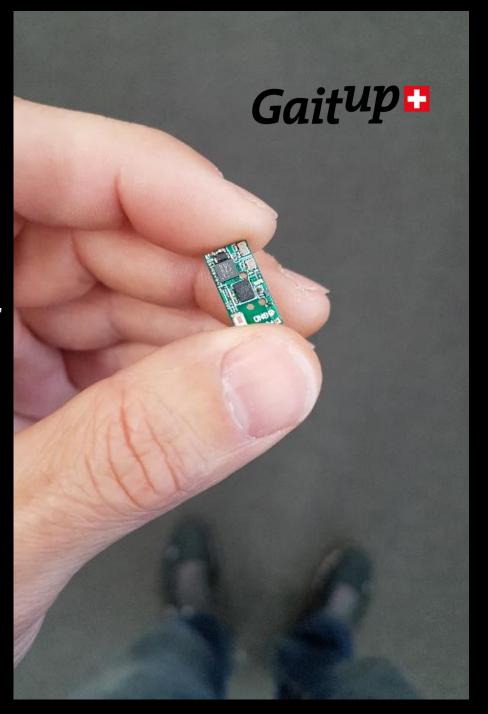
Monitor

3 pills per monitor

Multichannel: 7 monitors in parallel

Storage: 80 000 data per pill Autonomy in charge: 24h

Size: 120mm x 70mm x 15mm



once to enable extended use. The monitor's interface allows the user to download data to a PC/ Mac for storage. The pill is safe, non-invasive and easy to use, leaving the gastric system after one or two days, depending on individual transit time.

Physilog® NanoCore[™]

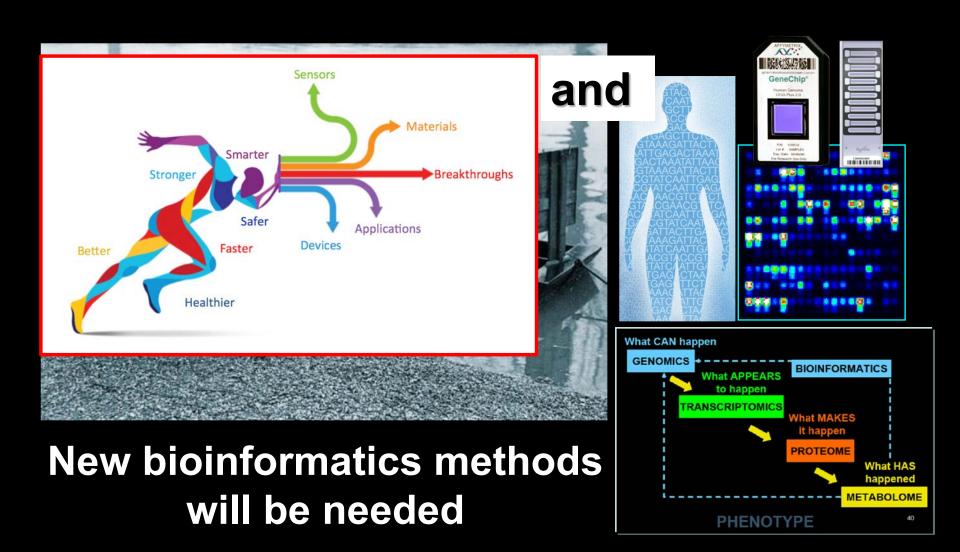
"A motion lab-on-chip"

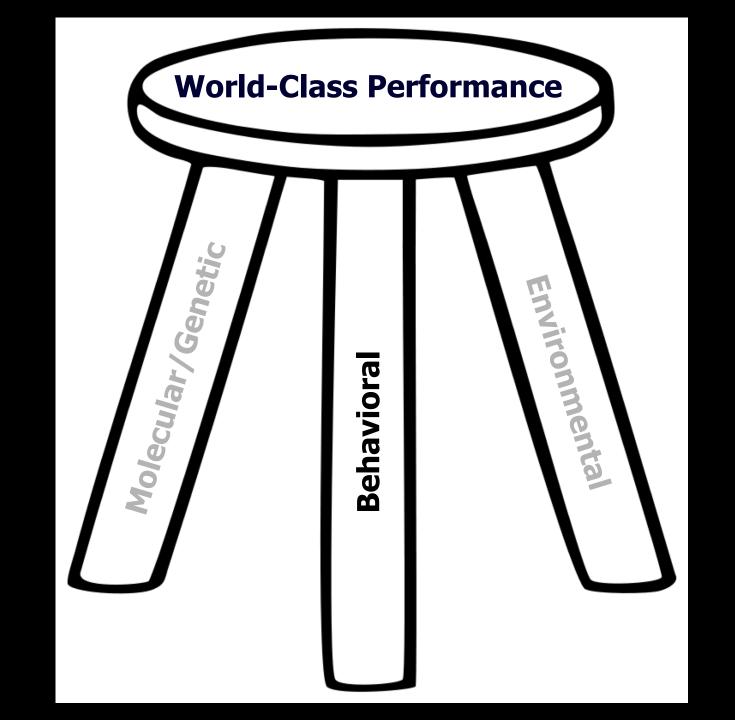
- Hardware: IMU sensing, processing, memory, communication
- Know-how from medical applications and Swiss luxury watch industry
- Miniaturisation at its best:
 Start of project: 18g -> Now: 0.2g
- Weight on shoe requires more effort than anywhere else

Wearable biomarker devices

WT | WEARABLE TECHNOLOGIES CONFERENCE

MUNICH FEBRUARY 5-6, 2019


INNOVATION WORLD CUP SERVICES ABOUT ~


This Wearable Can Measure Your Stress Through Stress Hormones in Your Sweat

The Scientific Basis of Training

The first sub-4-minute mile

Belief

(and have a good support team)

Bannister achieved what he believed his coach believed he could achieve.

Support team: By your actions you contribute to the perception each athlete has of her or his ultimate performance potential.

Belief

"The crucial thing that he (Stampfl) said was: 'Well I think you can run a 3:56 mile'. If he believed that - I hope he did - it certainly was a helpful comment. And he said if you have the chance and you don't take it you may regret it for the rest of your life"

Sir Roger Bannister May 6th 2004

