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Abstract 
Individual differences studies are those that investigate the interaction between a subject level 

covariate, such as sex, age, or performance, and the effect of an experimental task. 

Commonly, a brain region is selected on the basis of the task effect, and the signal in this 

region correlated with individual covariates. It is shown here that, provided that data are 

identically and independently distributed between subjects, the selection of the region on the 

basis of the task effect is unbiased in two cases: when selection is based on a one-sample t test 

of the task effect, or when the subject level covariate is centered. This result is meant to 

contribute to clarifying when using the same data for ROI selection and testing leads to valid 

tests in studies of individual differences. 
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Unbiased ROI selection in neuroimaging studies of individual 
differences 

 

Introduction 
Attention has recently been drawn to possible problems in tests in wich the selection of a 

region of interest (ROI) is followed by another test carried out on the ROI average data 

(Kriegeskorte et al. 2009, Vul et al. 2009). This work has the merit to have raised the 

awareness in the neuroimaging community of possible problems introduced by ROI selection 

procedures, and of the important problem of validity of the statistical analysis more generally. 

However, the claims by Vul et al. (2009) of lack of validity of a large number of 

neuroimaging studies have aroused controversy (Barrett 2009, Lazar 2009,  Lieberman et al. 

2009, Lindquist and Gelman 2009, Nichols and Poline 2009, Yarkoni 2009). 

This technical note examines the procedure in which the ROI is selected on the basis of 

the task effect as a preliminary step to compute a correlation with individual variables. The 

context in which this ROI selection procedure commonly arises is when one correlates at the 

second level a between-subjects covariate, such as sex, age, or performance, with the signal 

selected for significance in a first test of activation induced by an experimental task (Figure 

1). In this type of design, the procedure capitalizes on the capacity of the test for the task 

effect to select the relevant region, since task effects are much easier to detect than their 

modulation by individual differences (task effects are main effects, while individual 

differences are interactions). In the survey of Vul et al. (2009), ROI selection on the basis of 

task was adopted by about half of the reviewed studies in social and emotional neuroscience. 

This note will not be concerned with procedures in which ROI is selected on the basis of the 

between-subjects covariate itself (for the issues involved in that case, see the commentaries to 

Vul et al. (2009) and their reply in the same issue of the journal), or outside the context of 
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studies of individual differences. Hence, in this note the term ‘ROI selection’ without further 

qualification will always mean ‘ROI selection on the basis of the task effect’. 

INSERT FIGURE 1 ABOUT HERE 

For the ROI selection procedure to be valid, it is necessary that the explanatory 

covariate on the basis of which the ROI is selected be orthogonal to the explanatory covariate 

of the second test (Friston et al. 2006, Kriegeskorte et al. 2009). If this is not the case, and the 

same dataset is used both to select the ROI and to carry out the regression of the signal in the 

ROI on the individual covariate, then the measures of effect leading to ROI selection and 

determining the association with the individual covariate may be correlated, invalidating the 

analysis. 

Even if orthogonality of regressors is an uncontroversial requirement to obtain unbiased 

ROI selection, there are three reasons to consider the properties of this procedure on a formal 

basis. The first is that, while Vul et al. (2009) named the resulting selection ‘independent’, 

they also raised doubts about the inferior guarantees offered in this respect when compared to 

anatomical ROI selection, mentioning an appropriate use of functional ROI selection as the 

customization of anatomical ROIs to counter the effect of individual variation in cortical 

anatomy (Vul et al. 2009, pp. 282-283; Saxe et al. 2006). With anatomical ROIs, as with data-

splitting schemes or resampling, unbiased ROI selection is ensured by the fact that the 

selection does not take place based on the same data on which the effect of the individual 

differences is tested. A formal analysis may help to clarify if these doubts are justified. The 

second is the question raised by Kriegeskorte et al. (2009) on the role of generalized least 

squares (GLS) in the context of tests of within-subjects effects. In general, orthogonal 

regressors may not give rise to uncorrelated effect estimates in a GLS fit, because 

observations are weighted. Because in neuroimaging applications GLS is routinely used at the 

first level, one may wonder if it has an impact on ROI selection for testing the interaction with 

between-subjects effects. Finally, it is of interest to clarify if, beyond those just mentioned, 
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there is any situation in which functional ROI selection on the basis of task may result in 

selection bias. 

Here, it is shown that ROI selection on the basis of task leads to unbiased ROI selection 

in most cases, although exceptions exist. Unbiasedness results from using explicitly or 

implicitly centered individual covariates before entering them in the analysis. Unbiased ROI 

selection is therefore obtained in this type of study without resorting to inefficient data-

splitting schemes or anatomical ROIs. In the following, we investigate conditions for lack of 

bias in ROI selection in a progression of situations in which assumptions on the data are 

progressively relaxed. The conditions in which ROI selection bias may occur will be 

identified, and its impact on a study of typical size investigated with simulations. 

Materials and methods 
For the simulations of Figure 2 and 3, in each trial normally distributed random data with zero 

mean and unit variance were created for p = 20 subjects, with q = 100 data acquisitions in 

each (representing acquired volumes), each acquisition consisting of k = 20 000 independent 

datasets (representing voxels). Voxel-by-voxel estimates of effects of the within-subjects 

covariate A were conducted at the first level in each subject separately using the 100 volumes 

per subject (hence, on a q × k dataset), and brought forth to the second level.  This gave 20 

volumes of ‘contrast images’ at the second level, one per subject (a p × k dataset), which were 

fitted to a model with intercept and the between-subjects covariate B. Tests on the intercept 

defined the ROI as the voxels for which the significance level was P = 0.01 or less, and 

separate histograms of the estimated effect of the between-subjects covariate B were drawn 

for the voxels within and outside the ROI. Because the null hypothesis is true in the simulated 

data, between-subjects effects are realizations of the same zero-centered distribution in all 

voxels. Hence, the histograms should show that the distribution of between-subjects effects is 

centered about zero both within and outside the ROI if ROI selection is unbiased. The within- 

and between- subjects covariates A and B were random vectors with elements drawn from the 
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uniform distribution in the unit interval [0, 1]. In all simulations, data at the first level had a 

heteroscedastic distribution to simulate misspecification of the variance structure (using 

ordinary least squares where a generalized least squares fit would have been more 

appropriate). Heteroscedasticity at the first level was obtained by multiplying the data in each 

subject voxel-by-voxel by 1A A− + , where A  denotes the average of the elements of A, 

giving a coefficient in the unit interval centered about 1. In the simulations of Figure 3, 

heteroscedasticity affected also the second level, and was introduced by additionally 

multiplying all data voxel-by-voxel by 1G G− + , where G was a uniform random variable in 

the interval [0, 1], for the case with no association with B, or by 1B B− + , for the case where 

heteroscedasticity was associated with B (see Results for rationale). Each simulation consisted 

of data pooled from 10 independent repetitions of these trials. 

For the simulations of Figure 4, random data were generated with a normal random field 

distribution so as to simulate analysis on a typical volume. Each volume was a cube of size 

59 × 59 × 59, smoothed with a kernel of full-width half size (FWHM) 4 voxels. To avoid edge 

effects, volumes images were padded at the sides with random variates for 3 times the FWHM 

size of the kernel prior to smoothing. The volumes thus obtained approximate a full brain 

analysis on a typical normalized volume in a box of size 91 × 109 × 91, resampled at voxel 

sizes 2 × 2 × 2 mm. (over 200,000 voxels), smoothed with kernel FWHM 8 mm. ROI were 

selected as those belonging to the largest cluster defined by the threshold P = 0.001, 

uncorrected, at the second-level test on the intercept. The simulations were otherwise 

conducted as in Figure 2 and 3; different degrees of heteroscedasticity at the second level 

were obtained by multiplying the data by ( ) 1B Bγ − + , where γ  was given the values 1 (as in 

Figure 2 and 3), 0.5, 0.1, and 0.05. 

All simulations were carried out in MATLAB R2006b (The Mathworks, Natick, MA) 

installed on a machine equipped with a 64-bit Athlon processor (Advanced Micro Devices, 
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Sunnyvale, CA) running Windows XP (Microsoft, Redmond, WA). For the generation of 

random numbers, the ‘MATLAB5 generator’ was used. 

Results 

Case 1: Balanced models with independent errors 

Suppose we have acquired images under rest and while performing a demanding cognitive 

task (within-subjects factor A), and we are interested in the differences in activation between 

males and females (the between-subjects factor B, see Figure 1). In the individual differences 

study, the two relevant factors are the fixed within-subjects factor A cognitive task (to define 

the ROI), and its interaction AB with the between-subjects factor sex (to test if the difference 

in activation due to task differs in males and females). Note that it is the interaction AB, not 

the between-subjects factor B, that is normally of interest. In the two-step estimation 

procedure (Penny and Holmes 2007), one would first estimate the effect of A, or a predefined 

contrast on the levels of A, in each subject separately. These estimates would then be brought 

to the second level to be regressed on B. At the second level, testing for a nonzero intercept 

effect tests for an effect of A with subjects as a random factor. Testing the effect of B at the 

second level tests the interaction AB. 

If the data are balanced in all covariates (same number of observations per level of the 

covariate), and one may assume that the data are independent and identically distributed 

except for the correlation arising in the data acquired from the same subject, then the model 

corresponds to a balanced split-plot ANOVA design with replications in the innermost cells. 

In this case, there is no need to split the data to obtain independence between effect estimates: 

balanced ANOVAs are known for decomposing their sums of squares into orthogonal sets. 

Case 2: Balanced i.i.d. subjects 

In most practical cases, however, one will be interested in the requirements for the 

orthogonality of A and AB in a more general model, where for example the within-subjects 
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covariate A is obtained by convolving a series of events or blocks with a canonical 

haemodynamic response function before forming a contrast, and the between-subjects 

covariate B is a quantitative measure such as a depression score. As a result, two assumptions 

no longer hold: that the data are balanced in either A, B, or AB, and that the acquisitions at the 

first level are independent. It will still be assumed that data acquired from different subjects 

are independent, and that the variance-covariance of the data at the first level is the same in all 

subjects (i.i.d subjects; this assumption is relaxed in Case 3 below).  

Two very general requirements for unbiased ROI selection are that the data must be 

balanced in the random factor (same number of acquisitions in each subject), and that the 

same number of scans be acquired for any level of A in all subjects. Both requirements are 

almost invariably satisfied in neuroimaging studies. Together with the i.i.d. subjects 

assumption, these requirements are also necessary to implement the standard two-step 

estimation strategy of first- and second-level analysis. 

The third crucial requirement to obtain unbiased ROI selection is that B be centered. 

This makes the covariates A and AB orthogonal (see Appendix A). Kriegeskorte et al. (2009) 

point out that random components at the first level may introduce dependencies in ROI 

selection even if the covariates are orthogonal. In the specific case of the individual 

differences study, it may be shown that after centering B this is not so. The covariance 

structure at the first level has no impact on the bias of ROI selection, irrespective of the 

estimator used (ordinary least squares, OLS, or generalized least squares, GLS). The algebraic 

proof is in the Appendix B, and a demonstration through the use of simulations like those of 

Kriegeskorte et al. (2009) is in Figure 2. The idea of these simulations is that, if selection of a 

ROI by the within-subjects covariate A does not bias estimates of the effect of AB, then the 

AB  estimates must have the same distribution in the data within and outside the ROI chosen 

on A. Figure 1 shows that, after centering, the distribution of the AB interaction estimates is 

the same within and outside the ROI. 
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INSERT FIGURE 2 ABOUT HERE 

The procedure typically adopted in common neuroimaging practice, however, is slightly 

different from the one analyzed to this point, and somewhat more complicated. Remember 

that at the second level, the effects of A and of the interaction AB of the whole model are 

respectively given by the intercept and by B. Usually, an experimenter would first carry out a 

one-sample t test for the effect of A to select the ROI. Hence, the ROI would be selected from 

a model at the second level containing only the intercept. Then, the average ROI signal would 

be regressed on B in a model including the intercept, perhaps after centering B. The model to 

select the ROI and the model to regress on B differ. The simulation of Figure 2 and the 

algebraic treatment in the Appendix, in contrast, considered a unified model in which both B 

and the intercept were simultaneously included for both ROI selection and regression on the 

between-subjects covariate. 

To understand what happens when the one-sample t test plus regression procedure is 

followed, it is useful to remember that centering a covariate makes it orthogonal to the 

intercept, and consider the rules that specify what happens when one fits two covariates in the 

original or orthogonalized form, as for example listed in Draper and Smith (1998), 3rd ed., p. 

436. Let X1 and X2 be two covariates, and X2|1 be X2 orthogonalized with respect of X1. Then 

the following rules apply: 

Rule 1: the estimate of the effect of X1 obtained by fitting a model containing X1 and X2|1 is 

identical to the estimate obtained by fitting a model with only X1. 

Rule 2: the estimate of the effect of X2 obtained by fitting a model containing X1 and X2 is 

identical to the estimate obtained by fitting a model with X2|1. 

Here, X1 is the intercept, X2 the non-centered B, and X2|1 the centered B. When one selects the 

ROI using a one-sample t test, Rule 1 applies, meaning that one is obtaining the same 

estimates of the intercept as those obtained by fitting a model with a centered B (the 

significance thresholds will differ slightly since the residuals are obtained without B). When 
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one regresses on B, then Rule 2 applies, meaning that then it does not matter whether one 

centers B or not. Of course, if one does not centre B, the fit differs in the estimate of the 

intercept; however, one would no longer look at the intercept in the regression after having 

previously conducted a one-sample t test. In summary, the one-sample t test plus regression 

procedure is always equivalent to fitting the simultaneous model with centered B of the 

previous section, irrespective of whether one centers B or not, up to the degrees of freedom of 

the one-sample t test. 

Case 3: Balanced subjects, not identically distributed 

The results about Case 2 imply that, for a correlation to arise and bias ROI selection, 

assumptions on the data must be further relaxed. Here, the case is considered where the data 

acquired between subjects are no longer identically distributed. An example is when the 

magnitude of the variance of the residuals varies from subject to subject. The covariance 

structure is the same, but the magnitude of the associated variance component differs. More 

generally, heteroscedasticity between subjects may affect any variance component, but 

involvement of the residuals might be the case of most practical relevance. 

Here, it is important to distinguish between two cases, depending on whether the 

differences in the random variance component are systematically correlated with the between-

subjects covariate B or not. In the example of sex differences in the activation provoked by 

the cognitive task, one has a correlation of the residual variance if the first-level residual 

variance is systematically larger in one sex than in the other. 

If there is no systematic association with the values of the between-subjects covariate B, 

there will be on average no ROI selection bias after centering B (Figure 3, top row). Note that 

here unbiasedness is in the expectation (i.e. on average across studies; see Appendix C for a 

formal treatment). In individual studies, chance associations may bias ROI selection, 

especially in studies with few participants. This differs from Case 2, because if subjects are 

identically distributed, A and AB are exactly orthogonal. 
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In contrast, if there is a systematic association between the variance structure and the 

between-subjects covariate B, ROI selection is biased, even after centering B (Figure 3, 

bottom row). One can see, however, that centering B still has a beneficial effect, since after 

centering only the source of bias due to heteroscedasticity is still present. 

INSERT FIGURE 3 ABOUT HERE 

To assess the practical importance of ROI selection bias heteroscedasticity, simulations 

were conducted on more realistic data, approximating the statistical analysis on a random 

field of the size of a normalized brain, selecting the ROI as the largest cluster defined by the 

significance level P = 0.001, uncorrected, as one may expect to find in a typical study. These 

simulations, shown in Figure 4, demonstrate that substantial degrees of correlation between 

first-level residual variance and the second-level covariate B are necessary to induce 

significant amounts of ROI selection bias. The data in the extreme left column, obtained with 

the same parameters as in Figure 3, reveal that extremely high correlations between 

heteroscedasticity and the covariate B were used to yield the robust effects reported 

previously. With systematic association levels below 0.4, hardly any bias can be detected in 

ROI selection. 

INSERT FIGURE 4 ABOUT HERE 

Discussion 
It has been shown here that centering the between-subjects covariate leads to unbiased ROI 

selection in individual differences studies irrespective of the covariance structure at the first 

level and how it is accounted for at first-level estimation. Furthermore, the common procedure 

of selecting the ROI with a one-sample t test at the second level guarantees unbiased ROI 

selection by centering the between-subjects covariate implicitly. In contrast, biasedness in 

ROI selection may be occasioned by severe violations of the assumptions of identical 

distribution of data between subjects. In the simulations presented here, however, serious ROI 

selection bias was the consequence of very high correlations between heteroscedastic variance 
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and predictor variables; one wonders if such high correlations are often encountered in 

practice. 

It is worth noting in this respect that biased ROI selection in such extreme cases is not 

the only problem of the model, which may be viewed as misspecified on other grounds. 

Because the assumptions for the multi-step estimation strategy are not satisfied, inferences at 

the second level may be invalid irrespective of whether or how a ROI was selected, and the 

ensuing problems may be of a more fundamental nature than those of ROI selection. 

Centering a covariate causes the effect estimates to be parametrized as differences from 

the group mean. This is the same parametrization commonly used in ANOVA, and has the 

effect of inducing a lack of correlation in the sampling variance of the effects. The effect of 

centering are not limited to the between-subjects variable B: if the data at the first level are 

independent, it may be shown that centering A causes lack of correlation in the sampling 

variances of A and B, and centering both A and B has the same consequence simultaneously 

on A, B, and AB. 
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Appendices 

Appendix A. Orthogonality of A and AB 

In a sample of p subjects with q acquisitions obtained in each subject, let p q⊗1 a  be a within-

subjects covariate A, and p q⊗b 1  a between-subjects covariate B, where the subscript 

indicates the size of the column vector, and the symbol ‘⊗ ’ the Kronecker product. The first 

level covariate qa  may originate from the reparametrization of the model so as to encode a 

contrast within the factor A. If the between-subjects covariate B is centered, then 0p p′ =b 1 . 

Then, also the inner product between the AB interaction p q⊗b a  and the within-subjects 

covariate p q⊗1 a  is zero: 

( ) ( )

( )( )
p q p q

p q p q

p p q q

′⊗ ⊗

′ ′= ⊗ ⊗

′ ′= ⊗

b a 1 a

b a 1 a

b 1 a a

     

But since 0p p′ =b 1 , the whole expression vanishes. 

Appendix B. Balanced i.i.d subjects 

The general specification of a linear mixed model is 

β ε= + +y X Zu  

where the design matrix X specifies the covariates of the fixed effects β, Z is an incidence 

matrix for the random effects u, ε the error term, and Var( ) =y V . 

Assume for the moment that the dispersion matrix V is known and used in a GLS 

estimation, so that the sampling variance of the parameter estimates is 1 1ˆVar( ) ( )β − −′= X V X . 

By assuming the data to be independent between subjects with an identical random structure 

at the first level, one has 

0p= ⊗V I V , 



− 14 − 

i.e., V is block-diagonal with blocks given by the first-level dispersion matrix V0. Hence, the 

sampling variance is 

1 1 1 1
0

ˆVar( ) ( ) ( ( ) )pβ − − − −′ ′= = ⊗X V X X I V X .      (1) 

Let Aq be the full-rank matrix of all first-level covariates in the appropriate parametrization 

(in the previous section, aq was a column of this matrix; we now use the symbol A for all 

these covariates). Then the columns of X are 

p q⊗b 1  the between-subjects covariate B, 

p q⊗b A  its interaction with the within subjects-covariates AB, 

p q⊗1 A  the within-subjects covariates A, 

p q⊗1 1  the intercept. 

If 0p p′ =b 1 , it may be shown that the first two entries B and AB in this list are orthogonal to 

both last entries A and intercept in the outer product matrix 1
0( )p
−′ ⊗X I V X : 

B A⊥  1 1
0 0( ) ( )( ) 0p q p p q p p q q
− −′ ′ ′⊗ ⊗ ⊗ = ⊗ =b 1 I V 1 A b 1 1 V A   

interceptB ⊥  1 1
0 0( ) ( )( ) 0p q p p q p p q q
− −′ ′ ′⊗ ⊗ ⊗ = ⊗ =b 1 I V 1 1 b 1 1 V 1  

AB A⊥  1 1
0 0( ) ( )( ) 0p q p p q p p q q
− −′ ′ ′⊗ ⊗ ⊗ = ⊗ =b A I V 1 A b 1 A V A  

(2) 

interceptAB ⊥  1 1
0 0( ) ( )( ) 0p q p p q p p q q
− −′ ′ ′⊗ ⊗ ⊗ = ⊗ =b A I V 1 1 b 1 A V 1   

The matrix 1
0( )p
−′ ⊗X I V X  is therefore block-diagonal with B, AB, and their product in one 

block, and A, the intercept, and their product in the other. After inversion, the off-block 

diagonal terms remain zero, including the covariance between AB and A. 

In maximum-likelihood estimation, the unknown dispersion matrix V is replaced by its 

estimate V̂ . McCulloch and Searle (2001) summarize studies on the sampling variance for 

this case, which is given by an expression of the form 

1 1
ML

ˆVar( ) ( )β − −′= +X V X T ,        (3) 
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with T a complex function of 1 1( )− −′X V X  (see pp. 164-166). The discussion of the previous 

section may apply also to this case. 

Misspecifying the dispersion matrix V0 at the first level, for example by using OLS, 

leads to the same conclusion. If a “working matrix” W is used in place of the unknown 1−V  

(Diggle et al. 2002), the sampling variance is given by 

1 1Var( ) ( ) ( )Wβ
− −′ ′ ′= X WX X WVWX X WX% .      (4) 

After replacing in this expression 0p ⊗I V  for V, and 0p ⊗I W  for the misspecified matrix W0 

at the first level, algebraic manipulations analogous to those just shown give a block diagonal 

structure for both ′X WX  and ′X WVWX , with zero inner product between AB and A. For the 

OLS estimator at the first level in which 0 q=W I , 

1 1Var( ) ( ) ( )Iβ
− −′ ′ ′= X X X VX X X% ,       (5) 

with block diagonal structure for ′X VX . In summary, it does not matter how first-level 

estimates are obtained with respect of the random effects; selection of ROI remains unbiased 

in the i.i.d. subjects case. 

Appendix C, Balanced subjects, not identically distributed 

It is shown here that deviations from the independent identical distribution case affecting the 

data acquired between subjects may bias ROI selection. Suppose, for example, that the model 

is fitted assuming identically distributed data between subjects (by using OLS at the second 

level), so that the working matrix is 0p= ⊗W I W . In reality one variance component differs 

from subject to subject. To model this eventuality, write 

p q p λ= ⊗ + ⊗V I V Λ R  

where p q⊗I V  absorbes all variance components that are i.i.d. between subjects, with the 

heteroscedastic p λ⊗Λ R  being the exception. λR  is the correlation structure of the residuals, 

parametrized by the diagonal matrix pΛ  containing heteroscedasticity parameters at subject 
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level (in the simulations of the main text, where heteroscedasticity affected residual variance, 

qλ =R I ). Replacing V in equation (4), the sampling variance decomposes into a sum of two 

terms: 

1 1 1 1Var( ) ( ) ( ) ( ) ( ) ( ) ( )W p p p λβ − − − −′ ′ ′ ′ ′ ′= ⊗ + ⊗X WX X W I V WX X WX X WX X W Λ R WX X WX% . 

The first term is the sampling variance due to identically distributed components between 

subjects, which was shown in the previous section to give zero covariance between A and AB. 

In the second term, 1 1
0( ) ( ( ) )p

− −′ ′= ⊗X WX X I W X  has the usual block diagonal structure. The 

contribution of heteroscedasticity to the covariance is therefore given by ( )p λ′ ⊗X W Λ R WX . 

If one computes the analogous entries in the list of products of cross terms (2) for this 

covariance, one finds that block diagonal structure is maintained if the weighted inner product 

term p p p′b Λ 1  is zero. For example, after some algebraic manipulations the entry for the 

covariance between A and AB is 

0 0p p p q qλ′ ′⊗b Λ 1 A W R W A ,        (6) 

while the other entries are all Kronecker products between p p p′b Λ 1  and a second term. If the 

variance of the data in the subjects, i.e. the diagonal terms of pΛ , are uncorrelated with the 

values of bp, then the weights in the inner product cancel each other on average, and for 

0p p′ =b 1  the expectation of these products is zero. Hence, in the absence of a systematic 

association, bias can occur only if chance differences in variance are aligned with the 

between-subjects covariate bp. This becomes increasingly unlikely with increasing number of 

subjects. 

It is also possible for the term 0 0q qλ′A W R W A  to be zero. Suppose that there is 

correlation between subjects given by pΛ , but data are i.i.d. at the first level, and OLS is 

used; then 0 q=W I , q qλ ′=R 1 1 , and if the columns of A are centered, q q′ ′ =A 1 1 A 0 . 
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Figure captions 
Figure 1. Schematic diagram of an individual differences study. The within-subjects variable 

A codes experimental conditions (used for ROI selection), as in the figure, or expected BOLD 

signal at blocks or event types. The between-subjects variable B codes for individual 

characteristics (used for ROI analysis). 

Figure 2. Estimates of the interaction effect AB inside (gray, red in the online version) and 

outside (black, blue in the online version) the ROI selected by an effect of A significant at the 

P = 0.01 level in random data. On the left, the B covariate was not centered, causing bias in 

ROI selection visible as AB effects being positive even if in reality here the null hypothesis 

holds. On the right, no bias is ROI selection after centering B. In these data, large variance 

differences correlated with A were introduced in the first-level data, and the effect of A was 

estimated using ordinary least squares, showing no impact on ROI selection bias. 

Figure 3. The same simulation as in the previous figure, with the addition of large variance 

differences across subjects. In the top row, these differences were introduced randomly. As a 

result, ROI selection is biased only if B is not centered (left) but remains unbiased if B is 

centered (right), as in the case where variance is the same across subjects (Figure 2). 

However, if the differences in variance are correlated with B (bottom row), centering B will 

not remove this additional source of bias in ROI selection. 
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Figure 4. The top row displays correlations carried out at the ROI to test the interaction 

between A and B in random data, with progressively lower degrees of heteroscedasticity from 

left to right. The least squares lines of all ten trials of the simulation are shown to assess 

variability of bias at fixed heteroscedasticity levels. The middle row shows boxplots of the t 

values obtained in the regression; if ROI selection is unbiased, the boxes should be roughly 

centered at zero. In the bottom row, diagnostic scatterplots of the correlations between 

residual standard deviation in the first-level fit in the ROI and the between-subjects covariate 

B. The highest correlation level on the left was used in the simulations of Figure 3 to obtain 

the robust effects shown there. These plots show that in samples of this size this correlation is 

capable to alert to the possible ROI selection bias.  



− 19 − 

Figures 
 

 

Figure 1 



− 20 − 

 

 

 

 

Figure 2 



− 21 − 

 

 

 

 

Figure 3 



− 22 − 

 

 

 

 

Figure 4 


