
 

Effects of large-scale nonstationarity on parametric 
maps. A study of rest perfusion CASL data 

 

 

Roberto Viviani 

 
Department of Psychiatry III  
University of Ulm, Germany 

 

 

 

 

 

 

 

 

 

 

 

NOTICE: this is the author’s version of a work that was accepted for publication in NeuroImage. Changes 

resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other 

quality control mechanisms may not be reflected in this document. Changes may have been made to this work 

since it was submitted for publication. A definitive version was subsequently published in NeuroImage, 

[54:2066-2078, 2011 Feb 1] DOI:10.1016/j.neuroimage.2010.10.041. 

 



− 1 − 

Abstract 

This study investigates the emergence of characteristic patterns in clusters thresholded at 

uncorrected significance levels, using as a case study rest perfusion images obtained with the 

continuous arterial spin labelling technique (CASL). The origin of these patterns is traced 

back to the existence of large-scale spatial covariance, a violation of the stationarity 

assumption on the spatial distribution of residual errors. It is shown that in the presence of 

large-scale covariance, several principles or intuitions common among experimenters when 

evaluating the inferential strength of their analyses are not applicable. Thresholded maps and 

clusters are confounded by the spatial patterns of large-scale covariance, irrespective of the 

existence of a true effect, as shown in t maps constructed by resampling groups at random 

from a large pool of volumes.  Filtering clusters according to their size made the problem 

worse, and corrections on cluster size based on random field theory models of smoothness had 

only a minor impact on their tendency to appear in characteristic locations. A formal analysis 

shows that the large-scale covariance at the origin of these problems is retained in the 

parametric map irrespective of sample size. Therefore, neither sample independence nor 

sample size protect from replications of effects being confounded by replications of the spatial 

covariance of residual errors. In contrast, cluster peaks were not affected by large-scale 

covariance but only by local differences in smoothness levels, as predicted by random field 

theory for the distribution of maxima, highlighting the different inferential robustness of 

cluster-based and maxima-based statistics. A framework is provided to generalize these 

results to mixed effects models with nested random effects, applicable also to activation 

studies. Large-scale nonstationarity is most problematic when the variance source at the origin 

of the characteristic patterns is not specific to a function or variable involved in the inferential 

process, as typically in observational studies of individual differences. These results raise the 

question of the existence and impact of large-scale nonstationarity in studies with data 

obtained with other techniques. 
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Effects of large-scale nonstationarity on parametric maps. A study 
of rest perfusion CASL data 

 

1. Introduction 

This work originates from efforts to clarify the nature of spatial patterns encountered in 

baseline rest perfusion images obtained with the continuous arterial spin labelling technique 

(CASL, Alsop and Detre 1998; Detre et al. 1992; Wang et al. 2005; Williams et al. 1992). 

These patterns are visible when statistical parametric maps are thresholded at uncorrected 

levels to display the estimated effects. In our work, CASL was applied to study individual 

differences in baseline perfusion defined by psychological variables or genotypic variants 

(Abler et al. 2008; Beschoner et al. 2008; Kirchheiner et al. 2010; Viviani et al. 2010a). We 

noted that the same patterns tended to arise in t maps of linear estimates of individual 

differences, even if the explanatory variables used across studies had little relation to each 

other, sometimes confounding the interpretation of clusters of effects. Figure 1 exemplifies 

this phenomenon. The posterior part of the brain loads on the individual differences variable 

in a study of rest perfusion and working memory capacity (Beschoner et al. 2008), SERT 

promoter genotype (Viviani et al. 2010a) and emotion suppression (Abler et al. 2008). 

FIGURE 1 

Maps thresholded at uncorrected significance levels constitute an important aspect of 

the statistical analysis in neuroimaging practice (Poldrack et al. 2008). Even when formal 

evidence relies on corrected significance levels (Friston et al. 1994; Poline and Mazoyer 

1993; Worsley et al. 1992), the clusters visible in the maps thresholded at uncorrected levels 

convey information on the shape of the effect. These overthreshold maps also provide 

information for meta-analytic studies (Wager et al. 2007). The reduced number of clusters, 
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relative to voxels, may be exploited to improve the precision of the effect estimate and reduce 

the size of the testing family (Chumbley et al. 2009; Heller et al. 2006; Penny and Friston 

2003). In contrast, maps thresholded at strong control levels (voxel level), which are much 

more stringent, often display punctiform foci of activation, and may not reflect the real 

interest of experimenters concerned with mapping overall regional effects. Variables such as 

sex, age, genotype or diagnosis may be assumed to have a spatially extended effect on brain 

structure. In cases such as these, interest may center on regional effects, and the focus of 

inference may be the clusters of adjacent voxels reaching a cluster-defining threshold, rather 

than the sparse, punctiform activation identified by voxel-level statistics. In this context, the 

emergence of patterns as noted above constitutes an important methodological and practical 

issue. 

A clue to the possible origin of the patterns we observed is given by their similarity to 

spatial patterns of covariance obtained in a principal component analysis of these data 

(Viviani et al. 2009; Figure 1D). The pattern in Figure 1, obtained after adjusting for global 

perfusion levels, opposes the posterior part of the volume, roughly in the territory of the 

vertebral artery, to the rest of the brain. This means that in each estimated cerebral blood flow 

(CBF) volume, a shape similar to the one shown in the figure may be staked out by signal 

that, at random, is either darker or brighter than its surroundings. The shape in the t map 

appears when the shapes in each volume in the sample happen not to cancel each other 

between the groups tested. However, this explanation of the existence of these patterns is, in 

its simplicity, misleadingly reassuring. To foreshadow the nature of the problem examined 

here, note that the map in Figure 1A was obtained from a sample of over 140 individuals, 

larger than that of many neuroimaging studies. At which point may one expect to have 

sampled enough subjects to avoid worrying about this problem? 

Because of the large number of voxels in a volume, many voxels reach an uncorrected 

threshold by chance alone. The random tendency of these voxels to reach the threshold 
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together in the same experiment, i.e. the spatial pattern formed by them, is given by the 

covariance of the map under the null distribution. A common assumption made on this 

covariance is second-order stationarity, as when adopting a random field model for the errors 

of a general linear model at each voxel (Worsley et al. 1992, 1999). In a stationary random 

field, the joint distribution, or covariance, between any voxel and all others is the same for all 

voxels. Under this assumption, the pattern formed by overthreshold voxels is one of blobs of 

activation randomly scattered across the brain. However, if the form of spatial covariance is 

not constrained in some way such as by stationarity, the possibility arises that a characteristic 

cluster pattern may be observed resulting from spatial covariance binding together the signal 

in the voxels of the cluster. The existence of large-scale patterns in spatial covariance, as 

detected in a principal components analysis, and the tendency of the components to emerge in 

the thresholded maps as shown in Figure 1, suggests that the stationarity assumption is 

violated in these data. 

It will be useful to distinguish between two ways in which stationarity may be violated. 

The first is due to local differences in spatial smoothness (or ‘local isotropy’, Taylor and 

Worsley 2007). The importance of smoothness is due to the fact that it determines the 

distribution of maxima in the random field (Taylor and Worsley 2007), which is used to 

obtain voxel-level (strong control) rejection thresholds. In the discrete datasets used in 

practice, smoothness and its local variation across the volume is estimated from first-order 

differences between the data at contiguous voxels, and is encoded in the ‘RESEL density 

map’ (where RESEL stands for ‘resolution element’, Worsley et al. 1992). Based on this 

aspect of spatial covariance, Hayasaka et al. (2004) have introduced a correction for cluster 

size that takes into account the local inhomogeneity of spatial smoothness. 

However, because of its intrinsically local nature, this notion of smoothness 

homogeneity may not capture nonstationarity arising from large-scale patterns in the joint 

distribution of voxels. By ‘large scale’ covariance we mean substantial covariance beyond the 
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covariance in the neighbourhood of a voxel that makes data smooth, and that may introduce 

nonstationarity in the joint distribution of the voxels irrespective of smoothness (for example, 

differing degrees of left-right symmetry constitute a violation of the stationarity assumption, 

but it is easy to see that such nonstationarity may occur in the presence of uniform 

smoothness). Such large-scale nonstationarity may not only produce patterns in the data that 

may look more structured than scattered blobs; it also raises the issue of the adequacy of 

procedures that account only for local inhomogeneity of smoothness when correcting the 

spatial distribution of voxels (Hayasaka et al. 2004). 

The distinction between two types of violations of the stationarity assumption may also 

be useful to highlight the possible existence of differences in the influence of nonstationarity 

on the distribution of maxima on the one hand and of clusters on the other. The theoretical 

result that the distribution of maxima in the random field depends on local isotropy only 

(Taylor and Worsley 2007) implies that large-scale nonstationarity has no effect on the 

distribution of maxima of the random field. 

While originally motivated by a practical problem in the analysis of baseline perfusion 

data, where nonstationarity is well documented (Viviani et al. 2009, 2010b), this study 

contains a formal analysis of the covariance of parametric maps that is applicable more 

generally to studies of individual differences conducted with the statistical parametric 

mapping (SPM) approach (where the test statistic is estimated separately voxel by voxel). 

Going against the conventional view of this approach as  ‘massively univariate’, the first part 

of this study is concerned with the formulation of a multivariate model in which the SPM 

approach and the Gaussian random field assumption on the spatial distribution of the errors 

are recovered as a special case. In the second part of the paper the effect of covariance 

patterns outlined by the model is investigated empirically in baseline perfusion images 

obtained with arterial spin labelling. 
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2. Theory 

To clarify the behaviour of the patterns of overthreshold voxels, we seek here an explicit 

expression for the covariance of the parametric map (which differs from the covariance of the 

coefficient estimates) in a model that includes data in all voxels at once. We will first consider 

a simple design in which one volume is acquired per subject, and subsequently extend the 

treatment to more complex setting in which the two sources of variance of rest perfusion 

studies are modelled explicitly. 

2.1 One volume per subject 

Consider a dataset with n volumes, each containing v voxels, modelled by a design matrix X 

of n rows, as in a second level analysis where each volume corresponds to a subject. Let y be 

a single vector obtained by stacking the data obtained in each voxel on top of each other. 

Hence, the first n elements of y are the data of the first voxel of all volumes, the second n 

elements those of the second voxel, and so on for all voxels. The model equation is 

 ( )v= ⊗ +y I X β ε , Var( ) n= ⊗ε S I .  (1)

The Kronecker product ‘⊗ ’ between the v × v identity matrix vI  and the design matrix X is 

used here to formalize voxel-by-voxel modelling. In the expression v ⊗I X , the design matrix 

X has been stacked across the diagonal to model the data in each voxel separately. In the 

expression for the covariance of the errors Var( )ε , the element on the left of the Kronecker 

product is the spatial covariance S of the errors, while the n × n identity matrix nI  on the right 

expresses the independence of sampling from subject to subject in each voxel (Appendix A 

gives a more general expression). The covariance matrix S absorbs the voxelwise variances 

on the diagonal. Let 2
kσ  be the variance in each voxel k, k = 1, 2, …, v, and collect all these 

voxelwise variances in a v × v diagonal matrix K. If G is the v × v spatial correlation of the 

errors, the spatial covariance may be written 
1 1
2 2=S K GK . In practice, G would incorporate 

the effect of smoothing usually applied in the preprocessing stages. At kernels sizes 
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commonly in use, smoothing removes high spatial frequencies from the data, but residual 

inhomogeneity of smoothness is commonly observed (Ashburner and Friston 2000). It would 

also not remove any large-scale covariance, whose spatial frequencies are low. 

The least squares estimates β̂  of this model, computed voxel by voxel, are 

 1ˆ ( )v
−′ ′⎡ ⎤= ⊗⎣ ⎦β I X X X y .  (2)

Here, β̂  is a vector containing the voxels of the beta images stacked on top of each other. As 

before, the Kronecker product between the identity matrix vI  and the projection operator 

1( )−′ ′X X X  formalizes the estimate of the coefficients of the model separately in each voxel. It 

may be shown (see Appendix A) that the sampling variance of these voxelwise estimates is 

 ( ) 1ˆVar( ) −′= ⊗β S X X .  (3)

Furthermore, given an operator v= ⊗C I c  that produces the contrast image ˆ′C β  when 

applying the contrast vector c to the beta images in each voxel separately,  

 ( ) 1ˆVar( ) −′ ′ ′= ⊗C β S c X X c ,  (4)

where 1( )−′ ′c X X c  is a scalar. In these expressions, the element on the left of the Kronecker 

product is the spatial covariance the beta images, which is the same S of the errors, and the 

element on the right is the contribution of the structure of the design matrix to the sampling 

variance.  

While the least squares estimator presented here was constructed by formalizing the 

procedure of estimating voxel by voxel, the beta images turn out to be identical to the 

coefficients estimates of the multivariate model (Appendix A). Model equation (1) is a 

notational variant of the standard multivariate model in which each voxel is a separate 

outcome variable (Mardia et al. 1979, pp. 173-174). The SPM and a standard multivariate 

approach differ in how the test statistic is derived from these estimates. In the multivariate 

approach, the test statistic is obtained by scaling the coefficient estimates by the whole 
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sampling variance Ŝ , estimated from the data at hand. In the SPM approach, in contrast, the 

elements of ˆ′C β  are scaled at each voxel k separately by the voxelwise sample standard error 

( ) 12ˆkσ
−′ ′c X X c  to obtain a parametric map that is subsequently thresholded. The SPM 

estimator, therefore, does not use the whole covariance Ŝ  (not estimable in entirety due to its 

dimensionality), but only its diagonal elements 2ˆkσ .  It may be shown (see Appendix B) that 

for known 2
kσ  the covariance of the parametric map SPMz  obtained in this way is the spatial 

correlation G of the original data: 

 SPMVar( ) =z G .  (5)

Note that the expression for the sampling covariance of the parametric map SPMVar( )z  

of equation (5) differs from the corresponding expression for the beta images ˆVar( )β  or 

ˆVar( )′C β  of equations (3) and (4) in one important respect. In the sampling variance of the 

beta images, the term 1( )−′X X  represents the influence of the number of observations in the 

sample, expressing the increased precision of the β̂  estimate with samples of increasing size. 

No such term is present in the sampling variance of the z map: the spatial covariance of the z 

map is the correlation of the original errors, irrespective of the size of the sample. For t maps 

computed in practice, where the variance at each voxel is estimated from the sample, these 

results are a limiting case. 

In the Gaussian random field model, S is assumed to be the realization of a stationary 

Gaussian stochastic process with mean zero and variance 2
kσ  in each voxel k, which defines 

the form of G accordingly, and in terms of fewer parameters than a general positive definite 

correlation matrix. In this case, the result of equation (5) is the formalization of the standard 

neuroimaging assumption that the parametric map is a z or t random field with the same point 

spread function as the errors of the model. Hence, the smoothness parameter of the spread 
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function is estimated from the residuals of the fit, taken for this purpose as proxies of the 

errors. The formalization adopted here makes explicit the random field assumption in terms of 

a restriction on G in a multivariate model; the result of equation (5) may be taken for granted 

when G is a stationary random field, but experimenters may not consider this result equally 

obvious when G expresses another spatial covariance pattern. 

2.2 Extension to other designs 

For the rest perfusion data that motivated the present study, the covariance S at the second 

level may be decomposed into two distinct sources: acquisition-to-acquisition (i.e. from 

successive CBF estimates), and subject-to-subject, each presenting its own spatial pattern. 

Both contribute to the covariance of the parametric map, but with different weights: 

 1 1 1 1
2 2 2 2

SPMVar( ) A A= +z W QW W GW ,       A v+ =W W I .  (6)

Here, Q and G are the subject-to-subject and acquisition-to-acquisition correlation matrices, 

and WA , W are diagonal matrices of influence weights regulating the relative contribution of 

Q and G. Note that, since Q and G differ, the spatial patterns of SPMz  merge two distinct 

pattern sources with different intensities according to the respective weights, varying across 

voxels. A formal analysis (Appendix C) reveals these weights to depend on the number of 

acquisitions, with a rate that depends on the relative size of acquisition-to-acquisition variance 

across the volume. Increasing the number of acquisitions reduces the relative influence of the 

acquisition-to-acquisition component G, but the influence of the subject-to-subject variance Q 

increases, and is present irrespective of the size of the sample defined by the number of 

participants. Hence, while recruiting more subjects cannot eliminate large-scale 

nonstationarity due to subject-to-subject variation, increasing the number of acquisitions will 

gradually degrease the relative influence of acquisition patterns in the merge. As shown in 

Appendix C, the influence of acquisition-to-acquisition correlation G in rest perfusion images 

acquired for 8 min or more is likely to be felt only in circumscribed white matter areas or at 

the base of the brain. 
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One approach to understanding this result, and applying the same reasoning to more 

general mixed models to determine the sources of the patterns of covariance, is to view the t 

or z statistics that have been considered so far for the parametric maps as specializations of F 

tests, and make use of the insight given by ANOVA tables provided by standard texts of 

experimental design. The voxelwise sample standard error ( ) 12ˆkσ
−′ ′c X X c  that was used to 

scale the voxelwise contrast estimate ˆ′C β  and obtain a parametric map in the previous section 

corresponds, in the F test, to the ‘background’ mean sum of squares (Snedecor and Cochran 

1967), i.e. the one used in the denominator of the relevant F ratio, of an ANOVA table. The 

expectation of these mean sums of squares is given by a weighted sum of the relevant 

variance terms, and this is the origin of the weights of equation (6), in which two sources of 

variance are merged (Appendix C, equations C.1-C.5; in fact, the ANOVA result is the 

starting point to derive these equations). The value of this approach is that it provides a simple 

way to determine the origin of possible sources of the spatial patterns of covariance and their 

relative influence, at least under additivity of the random components and for balanced 

designs, by looking up the F ratio corresponding in the table to the contrast brought to the 

second level. If one’s aim is only to identify the structural sources of variance in the map, 

depending on the test and which factors are fixed and which are random, it is not necessary to 

produce tables replicating the covariates and the contrasts of interest exactly, or derive the 

corresponding algebraic expression. 

As an example, consider a rest perfusion imaging study of individual differences in 

which subjects were divided into groups. For convenience, the ANOVA table for this design 

is reproduced in Table 1. Here, one can see that the F ratio to test an effect of groups, 

MSGROUPS/MSSUBJ, has at the denominator the mean squares between subjects MSSUBJ, whose 

expectation (given by the E(MS) column in the table) is a weighted sum of subject-to-subject 

and acquisition-to-acquisition variance, as in equation (6). Contrast this result with testing the 
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activation of a task administered as a number of “treatments” within subjects. Table 2 is the 

ANOVA table of a repeated measures experiment with different levels of a within-subjects 

factor of experimental treatments. Here, tests on the within-subjects factor are conducted on 

the ratio MSTREAT/MSSUBJ×TREAT. The expectation of the denominator mean squares 

MSSUBJ×TREAT contains, besides acquisition-to-acquisition variance, the random interaction 

experimental treatment × subjects. Further application of this approach reveals that in the 

activation study tests of individual differences in task activations are done on MSSUBJ×TREAT, 

but tests of individual differences in average perfusion levels are done on MSSUBJ (likely to be 

similar, even if not identical, to the MSSUBJ of a baseline perfusion study; see Winer et al. 

1991, pp. 326-333). Note that acquisition-to-acquisition variance is present in all these mean 

squares terms, arising from the precision of estimation at the first level; however, its relative 

influence may be limited due to the large number of acquisitions of MRI studies. The main 

contribution to these mean squares terms is therefore given by the other variance term, which 

depends on the test at hand. Because the spatial covariance of different random components 

does not, in general, generate the same spatial pattern, the confounding in the map may be 

different. These patterns may also differ from those of single-subject activation studies, or 

activation studies in which subjects are treated as a fixed nuisance effect, as in these cases the 

test the effect of interest is carried out on MSw, which is constituted exclusively by 

acquisition-to-acquisition variance. Analogous reasoning may be useful to identify the source 

of spatial patterns arising in more complex designs. 

TABLES 1, 2 

3. Material and methods 

3.1 Data acquisition 

Perfusion images were acquired with the CASL technique described in Wang et al. (2005) at 

3T for 8 min. while participants were resting with eyes closed in the scanner (resulting in 60 

perfusion images). The inversion pulse was given for 2 sec, followed by a delay of 1 sec 
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before the image was acquired. Details of the acquisition protocols may be found in Viviani et 

al. (2009). The smoothing kernel size was FWHM = 8 mm.  

3.2 Spatial distribution of overthreshold voxels in rest perfusion CASL data 

Principal component analysis on the correlation matrix was carried out on the images 

averaged in each subject (for an estimate of the components of covariance at second level), or 

on the centered images in each subject (for an estimate of the components of covariance 

arising from first level). A singular value decomposition was carried out on the empirical 

volume × volume correlation matrix, and the components of the voxel × voxel matrix were 

subsequently recovered (see the appendix of Viviani et al. 2005). Computations were carried 

out in MATLAB R2006b (The Mathworks, Natick, MA) using the BLAS and LAPACK 

routines provided with that software, running on a 64-bit Athlon processor (Advanced Micro 

Devices, Sunnyvale, CA) under Windows XP (Microsoft, Redmond, WA). 

To compute rates of overthreshold voxels, averaged images in each subject based on 

n = 60 acquisitions were resampled at random over subjects from a pool of 295 subjects to 

obtain balanced groups of sample size a = 24, on which a two-sample t test was computed. 

The t maps were thresholded at the predefined significance level p = 0.001, uncorrected, and 

clusters larger than the predefined size of 200 voxels were retained. These values were chosen 

as representative of those encountered in practice. The resampling was repeated 8000 times, 

during which a count was kept in each voxel of the number of times it was included in one of 

these clusters, and the proportion of these events was used to generate the images in the 

Results section. In the simulations with ranked data, ranking was carried out in each trial in 

each voxel separately (in a sample of 48 subjects, data in each voxels were converted to 

numbers from 1 to 48, preserving their order). In simulations with correction for 

inhomogeneity of smoothness, cluster size was defined as the sum of RESELs in the 

overthreshold voxels, using equation (7) of Hayasaka et al. (2004). The RESEL estimate was 

computed with the function spm_est_smoothness, version 2.7, in the SPM2 package (Kiebel et 
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al. 1999). For reasons of computational feasibility, the RESEL estimate was computed once 

on the whole sample of 295 average baseline images; in real applications, this estimate may 

be more imprecise than in the present study. To maintain comparability, cluster extent 

thresholds were divided by the average voxel RESEL value. To assess the effect of voxel size 

in the distribution of clusters, the same procedure was repeated with cluster sizes 0, 50, and 

100 voxels. The images of the figures were generated with the freely available software 

MRIcroN (www.sph.sc.edu/comd/rorden/mricron/). 

Simulations with artificial data were carried out on the same number of volumes, in the 

same size and smoothness. Random fields were obtained by smoothing white noise with the 

same function spm_smooth used on perfusion data, as detailed in Viviani et al. (2007). 

Because there were no clusters of size 200 after 8000 trials, the cluster size was reduced to 50 

and the cluster-defining threshold was raised to p = 0.005, uncorrected. 

3.3 Logistic regression of overthreshold count 

To model the inhomogeneous binomial process resulting from thresholding parametric maps, 

the counts of overthreshold voxels were fitted to the first four component images in a logistic 

regression (with an overdispersion term to account for spatial dependency) using the function 

glm of the freely available software R, version 2.9.2 (obtained from http://www.r-project.org, 

The R Foundation for Statistical Computing, Vienna, Austria). Each component image 

provides a predictor in each voxel for the probability of observing overthreshold signal. 

Because common measures of explained variance, such as R2, have no equivalent counterpart 

in nonlinear models, we made use of methods introduced by Gelman and Pardoe (2007) to 

summarize the relative predictive effect of component images (see also Gelman and Hill 

2007, pp. 101-104, and pp. 466-473 for rationale and examples). Briefly, let f be the inverse 

logit function, f(x) = 1/[1+exp(−x)]. The inverse logit of the linear predictor of a logistic 

regression ˆ( )f X β  computes the fitted probability of obtaining a success at each trial for 

given values of the predictors X and fitted coefficients β̂ . Let ( )jX  be the same set of 
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predictors, except for the predictor variable j, which is set to zero. Then the difference 

( )ˆ ˆ( ) ( )jf X f Xβ β−  gives the net contribution of the predictor variable j to the fitted 

probability. This difference was computed for each voxel i using the values of the predictor 

variables that obtain in each voxel (i.e. the components) to draw the box plots of the figures. 

Significance values are not reported here because they may be misleading (the predictors were 

obtained from the same dataset where the resampling took place). Computational feasibility 

precluded the use of 2nd order resampling methods. 

3.4 Spatial distribution of cluster peaks 

In the study where counts of clusters maxima (peaks) were held, the clusters were selected 

with the same cluster-defining threshold of p = 0.001, but the number of resampling trials was 

brought to 80 000 to obtain images with sufficient contrast. To visualize local 

inhomogeneities of smoothness, a RESEL map was computed with the same function 

spm_est_smoothness used to compute the correction for cluster size. 

4. Results 

4.1 Spatial distribution of overthreshold voxels in rest perfusion CASL data 

In the treatment of spatial covariance of parametric maps presented in the Theory section, it 

was shown that this covariance approximates the spatial correlation of the original data, and 

that it does not vanish with increasing sample sizes. For this reason, a principal component 

analysis of the data collected under the null is informative of the patterns that may emerge 

when thresholding the parametric map. The practical consequences of this result depend on 

the prominence of nonstationary components in the data, in particular large-scale covariance 

patterns. Here, we investigate empirically the impact of spatial covariance on perfusion data 

using a well-characterized sample of baseline perfusion images (Viviani et al. 2009) collected 

for 8 min. during rest with the continuous arterial spin labelling technique (Wang et al. 2005). 

First, we carried out a component analysis of the correlation matrices of these images 

(in Viviani et al. 2009 the covariance was analysed, but the results presented here indicate that 
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it is the correlation that is relevant for the parametric maps). The first component is positive 

across the whole volume, and affects grey more than white matter (Figure 2A). The first 

component loads weakly in the posterior part of the brain, which is covered by the second 

component (Figure 2B). The third and fourth components, not shown here for brevity, capture 

left-right asymmetries in perfusion and further variation between grey and white matter (for 

more details and interpretation, see Viviani et al. 2009). 

FIGURE 2 

Second, we computed statistical parametric maps repeatedly for t tests comparing two 

randomly selected groups of perfusion images, using thresholds commonly employed to 

display images or define clusters. A count was kept of the number of times each voxel 

reached the threshold. Figure 3 shows that the count was not homogenous across the volume, 

as one would expect if the stationary model were true. It is apparent that the first two 

components of the correlation matrix of the data played an important role in determining the 

probability that a voxel is included in a cluster. For voxels included in a covariance pattern, 

the probability of cluster detection increased about fivefold. A very similar distribution of 

clusters was obtained in the opposite direction, i.e. for clusters of reduced signal, as one 

would expect from a random generating mechanism under a symmetric distribution of data 

(not shown here for brevity). Because the first component is strongly associated with global 

perfusion values (Viviani et al. 2009), t tests that adjust for global perfusion by including it as 

a covariate (as those of Figure 1) were much less affected by the first component; as a result, 

the influence of the second component is much more apparent (Figure 3B; Spearman 

correlation r = 0.38, p < 0.001, permutation test).  

To verify the extent to which the notion of local isotropy represented the spatial 

covariance characterizing these data, we carried out the same study using the RESEL 

correction for cluster size (Hayasaka et al. 2004), displayed in Figure 3C. The resulting 

overthreshold rate map is not very different from the one without correction. This suggests 
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that increased smoothness in gray matter is not the main reason for the increased cluster 

count. For comparison, Figure 3D shows the spatial distribution of clusters in artificial data 

generated according to the Gaussian random field distribution. 

FIGURE 3 

4.2 Logistic regression of overthreshold count 

To quantify the relative influence of the covariance components, we carried out a logistic 

regression of the voxel counts. The voxel values of the first four principal component images 

were used as predictors of the overthreshold count rates in each voxel, and the logistic 

regression was used to obtain the net contribution of each component to the fitted count rate 

(Figure 4; see Methods for computational details and references). The first plot on the left, 

‘Positive clusters’, contains the same data as in Figure 3A. One can see that the first 

component fits a large part of the observed count rates, shown in the first blue box from the 

left (the average fitted net count rate due to the first component alone is 0.570/00, while the 

average observed count rate in the data is 0.640/00). The fitted count rates due to the remaining 

components are progressively smaller (average fitted net count rates of 0.20, 0.08, and 

0.050/00). Note however that the net fitted rates are considerable for subsets of voxels, marked 

with circles as outliers in the plots. This is due to the fact that these remaining components 

load on more specific groups of voxels than component 1. After RESEL correction, (second 

plot from left), the fitted rates decrease slightly (with average fitted net count rates of 0.51 and 

0.130/00 for the first two components, relative to an average observed rate of 0.610/00), but 

remain far from those obtained in artificial data where the stationary Gaussian distribution 

holds (far right), which range around the values of 0.01-0.030/00. 

FIGURES 4, 5, 6 

A possible alternative explanation of the observed inhomogenous count rates of Figure 

3 would be based on differences in the distribution of the data across the volume. For 

example, regions with higher kurtosis are likely to reach the threshold more often (Viviani et 
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al. 2007). To exclude this eventuality, the computation of the counts was repeated after 

ranking the data in each voxel separately (Figure 4, ‘Ranked data’). The plot shows that 

ranking failed to remove the net rate due to the first two components in the logistic regression 

(average fitted net count rates of 0.32 and 0.110/00 for the first two components, relative to an 

average observed rate of 0.350/00). 

In Figure 3 it is apparent that, since regions bound together by the covariance are large 

in these data, the detected clusters are larger than those of artificial data. This suggests that 

filtering clusters by size may influence the contribution of the covariance components to the 

count rates. This intuition is confirmed by the results shown in Figure 5. When the cluster 

filter was 400 voxels, the average fitted net count rate of the first component was 0.500/00, 

relative to an average observed rate of 0.530/00. When there was no cluster filter, the average 

fitted net count rate of the first component was only 0.480/00 relative to an observed rate of 

1.020/00. This is proportionally less than when clusters are filtered, but still much more than in 

artificial stationary data. 

4.3 Spatial distribution of cluster peaks 

The influence on cluster detection rates of large-scale nonstationarity in these data raises the 

issue of how cluster peaks are affected. We investigated whether the incidence of cluster 

peaks follows that of whole clusters, or whether it is more similar to the incidence of maxima 

over the whole volume, which depends on local smoothness only (Taylor and Worsley 2007). 

Differences in local smoothness for rest perfusion data are shown in Figure 6A, as quantified 

by the RESEL density map. In Figure 6B, a count was taken in each voxel of when the voxel 

was a cluster peak in each resample. The count rate shows cluster peaks to follow the RESEL 

map closely, unlike the count rate of overthreshold voxels of the previous figures. 

5. Discussion 

Even when not applying random field theory in computing significance values, experimenters 

often adopt the random field model when thinking about their data. Under the assumption of 
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stationarity accompanying the random field model, the spatial distribution of errors is like that 

of smoothed white noise. The resulting expectation is that false positive activations are likely 

to be randomly and uniformly distributed throughout the brain. If the stationarity assumption 

does not hold, however, the spatial distribution of the thresholded signal may follow the main 

patterns of spatial covariation, instead of resembling a random set of blobs scattered across 

the volume of interest. When many voxels may be expected to survive thresholding by 

chance, the spatial pattern they form, which follows their covariance, may confound the 

interpretation of the thresholded map by superimposing on any existing true effects. 

Applying cluster-defining thresholds that may be encountered in practice to our rest 

perfusion data, we found that the probability of activation under the null was several times 

larger for voxels bound together by spatial covariance. The preponderance of large-scale 

nonstationarity in these data was demonstrated by the minor impact of the RESEL correction 

on this finding (Hayasaka et al. 2004). The importance of spatial covariance should be seen in 

relation to the fact that its influence of cannot be made arbitrarily small by increasing sample 

size, as one would usually expect from statistics obtained from consistent estimators. The 

problem has its origin in how parametric maps are obtained, i.e. by scaling coefficient 

estimates by voxelwise variances only instead of scaling by the whole covariance (which is 

not estimable in data of this dimensionality) as one would in a fully multivariate approach. 

The stationary random field model also justifies the notion that setting a size threshold 

to reported clusters improves the chances of the surviving clusters to be true (Forman et al. 

1995). Unfortunately, in the presence of the large-scale covariance of our data, this practice 

had the opposite effect: the association between detected clusters and covariance patterns 

increased. Hence, in the presence of large-scale nonstationarity, arguments commonly 

adduced in support of the validity of uncorrected significance levels, such as filtering cluster 

size, rest on shaky ground. The findings presented here also highlight the danger of the use in 
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observational studies of uncorrected significance levels, which are often adopted even for data 

whose distributional properties are not well documented (Beschoner et al. 2005). 

Another consequence of nonstationarity is the unreliability of the intuition that if 

enough data are collected, or enough studies compared, patterns emerging in parametric maps 

must reflect true effects, even if thresholded at uncorrected levels. Replications of results, 

referring to parametric maps thresholded in this way, may be contaminated by replications of 

the covariance pattern of the data. The spatial covariance of the parametric map is retained by 

increasing sample size, like its smoothness; however, practitioners might unwittingly apply 

different expectations when considering the effect of sample size on smoothness and on other 

aspects of spatial covariance. 

The importance of these spatial confounds on the interpretation of results will depend in 

general on the design of the study. In a mixed effects model, several random components may 

constitute the variance against which an effect of interest is tested; all of these may be at the 

origin of distinct spatial patterns, which will be present, with different weights, in the 

covariance of the parametric map. A careful consideration of the origin of these variance 

components may be required to correctly interpret the visual appearance of the thresholded 

map and the seriousness of the associated confounding pattern. 

Some of the covariance patterns visualized in the overthreshold maps of this study are 

interpretable in terms of the shape of the volumes outside the brain parenchyma, the 

properties of the vascular tree, or of the arterial spin labelling technique with which data were 

acquired. The dissociation between the anterior and posterior part of the brain, shown in 

Figure 2, follows the boundaries of the vascular territory of the cerebral artery (Viviani et al. 

2009), and other areas identified by the acquisition-to-acquisition components, especially at 

the base of the brain or in the cortex (Viviani et al. 2010b), may arise from labelled spins that 

have not yet reached the capillary bed, or from interactions between the timing of the 

labelling pulse and the rhythm of blood flow (transit time effects, Alsop and Detre 1996; 
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Gonzalez-At et al. 2000; Hernandez-Garcia et al. 2005; Lee et al. 2007; Mildner et al. 2005). 

Fortunately, at least under the customary additivity assumption on random effects, increasing 

the number of acquisitions may reduce the influence of this source of variance and the 

associated patterns on the parametric map. In a rest perfusion study, the remaining source of 

confounds are the patterns arising from subject-to-subject variance. 

In an activation study, which evaluates the effect of an experimental paradigm, the 

patterns of covariance would mainly be those of the interaction experimental 

treatment × subjects. If the influence of a confounded session-by-session variance term is 

negligible, as is the case for BOLD-EPI data (Smith et al. 2005; Wei et al. 2004), the random 

effect of the experimental factor × subjects interaction arises from an experimental 

manipulation, thus somewhat limiting the possible influences on the effect to covariates that 

are related to the task. This conclusion is supported by current investigations of subject 

variability in task-dependent cortical activation, which show it to be consistent with the 

involvement of specific networks, notwithstanding the variation in the precise localization of 

the task effect (Kherif et al. 2008; Miller and Van Horn 2007; Noppeney et al. 2006; Seghier 

et al. 2008). 

The relative specificity of the interaction component may be contrasted with the subject-

to-subject variance against which individual differences are tested in studies of signal mean 

levels. The subject-by-subject variance of these studies, which is purely observational, may be 

associated with a large number of possible uncontrolled covariates affecting the measurement, 

i.e. all those that for whatever reason change the individual signal across subjects. Because we 

cannot eliminate spatial covariance simply by acquiring larger samples, it might be difficult to 

determine whether the observed spatial patterns describe a true effect of the variable of 

interest, or emerge from an incidental association with such uncontrolled covariates. These 

difficulties would also apply to observational studies with an analogous design acquired with 

other neuroimaging techniques, if large-scale spatial nonstationarity is present in the data. 



− 21 − 

The results reported here empirically confirm the remarkable dissociation of clusters 

and cluster peaks in their sensitivity to large-scale covariance. Even for nonstationary data far 

from Gaussian as those examined here (CBF estimates are a ratio of random variables), 

cluster peaks followed the distribution of maxima described by random field theory, which 

only depends on the local smoothness of the image, not on large-scale stationarity (Taylor and 

Worsley 2007). Furthermore, since tests based on the distribution of maxima give strong 

control of the error rate, the frequency with which voxels reach the threshold due only to 

random variation (which follows the spatial joint distribution and gives rise to the problems 

described here) is bound by the significance level of the test. 

The different susceptibility of maxima and clusters to spatial covariance has a 

potentially wide-ranging implication, underscoring the importance of the result by Taylor and 

Worsley (2007). In the presence of a true effect of the predictor variable, the voxelwise test 

statistic must increase with sample size due to the consistency of common estimators, and 

sooner or later a rejection of the null at voxel level must be obtained using the maximal 

statistic. Permutation of this statistic (Bullmore et al. 2001; Holmes et al. 1996; Nichols and 

Holmes 2001) also delivers correct voxel-level significance values irrespective of the 

voxelwise and the joint distribution of the data. Therefore, if the question of interest may be 

answered by the detection of a punctiform effect, the technical means to overcome the spatial 

covariance problem by increasing sample size are widely available, and consist in the 

adoption of maxima-based statistics or voxel-level corrections. Interesting in this respect is 

the recent proposal of false-discovery rate approaches based on cluster maxima but 

controlling for error rates less than strongly (Chumbley et al. 2009). In contrast, inference on 

regional effects appears not to escape its intrinsically multivariate nature, showing the 

difficulty of addressing the problem of regional inference by refining correction thresholds 

with weak control of the error rate (Genovese et al. 2002; Hayasaka et al. 2004; Heller et al. 
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2006). The challenge these approaches face is that of accounting for complex joint 

distributions in the data, without modelling them in full (Efron 2008, 2010). 
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Appendices 

Appendix A. Multivariate formulation of the ‘massively univariate’ statistical 
parametric map model. 

In this section the multivariate derivation of the voxel-by-voxel model is presented. This is 

done in part for completeness, and in part to clarify in detail to what extent the ‘massive 

univariate’ and the multivariate approaches coincide. We consider here the general case in 

which the acquisitions may also be temporally correlated, as according to an n × n 

autocorrelation matrix P, which is assumed to be separable from the spatial covariance S. 

Using the same notation and stacking scheme as in the main text, the model is 

 ( )v= ⊗ +y I X β ε ,   
1 1
2 2Var( ) = ⊗ = ⊗ε S P K GK P , 

and the generalized least squares estimate β̂ , 

( ) 11 1ˆ ( ) ( ) ( ) ( ) ( )v v v

−− −′ ′= ⊗ ⊗ ⊗ ⊗ ⊗β I X G P I X I X G P y  

   1 1 1 1 1( ) ( )− − − − −′ ′= ⊗ ⊗G X P X G X P y  

   ( )1 1 1( )v
− − −′ ′= ⊗I X P X X P y , 

where in the main text, P = In. 
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The remarkable fact about this estimate, which is best linear unbiased, is that it makes 

no use of the spatial covariance, when it is separable from P. However, the sampling variance 

of β̂  does depend on the spatial covariance S: 

( ) 11ˆVar( ) ( ) ( ) ( )v v

−−′= ⊗ ⊗ ⊗β I X S P I X  

            ( ) 11 1 −− −′= ⊗S X P X  

            1 1( )− −′= ⊗S X P X , 

where the formula used in the main text is retrieved again by replacing P with In. This model 

goes back at least to S. N. Roy, who started with the standard multivariate model Y = XB + E, 

and introduced the stacking scheme to demonstrate the independence of the estimates from S 

(Roy et al. 1971, pp. 27-28). 

Let ( )v= ⊗C I c  be a linear operator to test a hypothesis separately in each voxel in the 

contrast image ˆ′ =C β 0 . The spatial covariance of the contrast image is 

ˆ ˆVar( ) Var( )′ ′=C β C β C  

            1 1( ) [ ( ) ]( )v v
− −′ ′= ⊗ ⊗ ⊗I c S X P X I c  

            1 1( )− −′ ′= ⊗S c X P X c . 

Appendix B. Covariance of the statistical map in the ‘massively univariate’ model. 

Let the model be that of eq. (1) of the main text, and c the vector of contrasts to test the 

hypothesis ˆ ˆ( )v′ ′= ⊗ =C β I c β 0  in each voxel. In each voxel, the variance of the contrast 

image ˆ′C β  is 2 1( )kσ
−′ ′c X X c  (i.e., the diagonal elements of 1( )−′ ′⊗S c X X c ). For known 

voxelwise variances 2
kσ  collected on the diagonal of the matrix K, the parametric map is 

therefore given by 

 ( )
1
21

SPM
ˆ−−⎡ ⎤′ ′ ′= ⊗⎣ ⎦z K c X X c C β .  
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This expression scales ˆ′C β  by the square root of 2 1( )kσ
−′ ′c X X c  in each voxel separately. 

Hence, making use of the result ˆVar( )′C β  = ( )1( )−′ ′⊗S c X X c  of the previous section, 

( ) ( )
1 1
2 21 1

SPM
ˆVar( ) Var( )

− −− −⎡ ⎤ ⎡ ⎤′ ′ ′ ′ ′= ⊗ ⊗⎣ ⎦ ⎣ ⎦z K c X X c C β K c X X c  

( )
( )

( )
1 1
2 21

1 1

1 1( )− −−

− −

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟′ ′= ⊗ ⊗ ⊗
⎜ ⎟ ⎜ ⎟′ ′ ′ ′⎝ ⎠ ⎝ ⎠

K S c X X c K
c X X c c X X c

 

      
1 1
2 2 1− −= ⊗K SK  

      =G . 

Appendix C. Extension to two nested random components. 

In the situation that motivated this study, the first level estimate is given by the average of the 

voxelwise signal yij over the acquisitions j (j = 1, 2, … n) in each subject i (i = 1, 2, … a). 

Hence, the sampling structure of the data includes two random components, assumed to be 

independent: a subject-to-subject variance 2
Aσ , representing the variation of a random variable 

A (the mean signal in each subject), and an acquisition-to-acquisition variance 2σ , this latter 

representing variation in the errors (to simplify notation, we omit the subscript indexing 

voxels when the context allows it). Using standard ANOVA results, the model and the 

sampling variance of this average signal iy ⋅ , when brought to the second level, will be in each 

voxel 

 
i i iy Xμ β η⋅ = + + , 2 21Var( ) A n

η σ σ= + ,  (C.1)

where μ is the intercept, Xi the second-level predictor with its associated voxelwise effect β, 

and iη  are the errors at the second level. The model equation of the second level is 

structurally the same as in the previous section, except that the errors variance Var( )η  is now 

composed by the subject-to-subject variance 2
Aσ , and its contamination by acquisition-to-

acquisition variance 1 2n σ− , reflecting the imprecision with which the mean signal is estimated 
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in each subject. One may therefore apply the previous analysis, now referring to second-level 

estimation, after replacing the covariance of the errors. 

Let KA and K be the v × v matrices collecting at the diagonal the values of 2
Aσ  and 2σ  

at each voxel, and Q and G the spatial correlation v × v matrices relative to subject-to-subject 

and acquisition-to-acquisition variation, respectively. Using the same data-stacking scheme as 

previously and an analogous notation, the model at the second level for the data in all voxels 

is now 

 ( )v= ⊗ +y I X β η , 

1 1 1 1
2 2 2 2

1Var( ) A A an
⎛ ⎞= + ⊗⎜ ⎟
⎝ ⎠

η K QK K GK I . 
 (C.2)

Here, the expression for the covariance of the second-level errors η is given by the same 

weighted sum of the variance components of the voxel-by-voxel model (C.1), assuming 

additivity of the spatial correlations Q and G (the coefficients of the spatial covariances are 

those of the random effects in the expected mean squares of the ANOVA model, scaled by n). 

After replacing the spatial covariance S of equation (4) with that of η, one obtains 

 
( )1 1 1 1

2 2 2 2
11ˆVar( ) A A n
−⎛ ⎞′ ′ ′= + ⊗⎜ ⎟

⎝ ⎠
C β K QK K GK c X X c .  (C.3)

The developoment parallels that of Appendix B after replacing variances and covariances of 

Var( )ε  with those of Var( )η . For known KA and K, the parametric map is given by 

 
( )

1
21

SPM
1 ˆ

A n

−
−⎡ ⎤⎛ ⎞ ′ ′= + ⊗⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

z K K c X X c C β . 

Hence, making use of equation (C.3) for ˆVar( )′C β , 

( ) ( ) ( )
1 1
2 21 1

SPM
1 1ˆVar( ) VarA An n

− −
− −⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞′ ′ ′= + ⊗ + ⊗⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

z K K c X X c C β K K c X X c  
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1 1
2 2

1 1 1 1
2 2 2 2

1 1 1 1A A A An n n

− −
⎛ ⎞ ⎛ ⎞⎛ ⎞= + + + ⊗⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

K K K QK K GK K K  

1 1
2 2

1 1
2 2

1 1
2 2

1 1
2 2

1 1

1 1 1                 

A A A A

A A

n n

n n n

− −

− −

⎛ ⎞ ⎛ ⎞= + + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞+ + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

K K K QK K K

K K K GK K K

 

1 1 1 1
2 2 2 2

1 1 A A
V V V V

A A

n n n n
− − − −

− −⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= + + + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

K K K KI Q I I G I
K K K K

.

Using this result, the spatial covariance of the resulting parametric map SPMz  may be written 

as a weighted sum of the spatial correlations, 

 1 1 1 1
2 2 2 2

SPMVar( ) A A= +z W QW W GW ,  (C.4)

where the weighting diagonal matrices WA and W are given by 

 1
1

A v
A

n
−

−⎛ ⎞
= +⎜ ⎟
⎝ ⎠

KW I
K

, 
1

A
v n

−
⎛ ⎞

= +⎜ ⎟
⎝ ⎠

KW I
K

,  (C.5)

/ AK K  is the diagonal matrix collecting the variance ratio at each voxel 2 2/ Aσ σ γ= , and 

 A v+ =W W I . 

These weights reflect the relative importance of subject-to-subject and acquisition-to-

acquisition variance in the influence of the respective correlation patterns. The relative 

contribution of the acquisition-to-acquisition correlation G as determined by its weight W, 

however, is discounted by the number of acquisitions at the first level n. From equation (C.5), 

one can see that with increasing n, WA approaches vI , while W vanishes. Conversely, for 

n = 1, WA is the matrix collecting on its diagonal the intraclass correlation at each voxel 

2 2 2/ ( )A Aρ σ σ σ= + , while W has on the diagonal 1 ρ− . Note that, as before, the number of 

subjects in the sample does not affect the spatial covariance of the parametric map in the 

limiting case in which the voxelwise variances are known. 
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To show that A v+ =W W I , note that WA and W are diagonal matrices in which each 

diagonal element is a function of the voxelwise variances. Hence, each of these diagonal 

elements in the sum WA + W is 

1 12 2

2 21 1 A

A

n
n
σ σ
σ σ

− −
⎛ ⎞ ⎛ ⎞
+ + +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

    

1 12 2 2 2

2 2
A A

A

n n
n

σ σ σ σ
σ σ

− −
⎛ ⎞ ⎛ ⎞+ +

= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

    

2 2

2 2 2 2 1A

A A

n
n n

σ σ
σ σ σ σ

= + =
+ +

. 

Therefore, the fractional contribution of subject-to-subject and acquisition-to-acquisition 

variation to the covariance of the parametric map is given by WA and W themselves:  

 ,A
A

A

=
+

W W
W W  

.
A

=
+

W W
W W

  

In practical applications, the sum of the weights may be larger than unity since the voxelwise 

variances are estimated from the data. 

In Figure 7A, the theoretical fractional contributions of acquisition-to-acquisition (in 

green) and subject-to-subject (in blue) covariance were plotted for the values of variance ratio 

γ = 10 and γ = 100, using equation (C.5). These values are representative of variance ratios in 

the gray and white matter, respectively (Figure 7B, ‘Variance ratio’), for rest perfusion data of 

8 min (60 acquisitions). One can see that in the gray matter the number of acquisitions 

necessary to damp acquisition-to-acquisition variance is reached quickly. In the white matter, 

by contrast, there are circumscribed areas where this random effect remains influential. 

However, with the possible exception of the anterior temporal lobe and the orbitofrontal 

cortex below z = −20, these areas are too small to form large clusters. Figure 7C, ‘Component 

#1’, shows that the map of the first spatial component of acquisition-to-acquisition variance 

has little contrast where the fractional ratio is high. The only possible exception is, again, the 
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base of the brain, and the tissue surrounding the vertices of the ventricle horns. We conclude 

that these circumscribed regions are vulnerable to displaying spatial patterns arising from 

acquisition-to-acquisition variation in rest perfusion imaging studies. 

FIGURE 7 



− 29 − 

Tables 

Table 1. 

Source of 
variation 

Degrees of 
freedom MS E(MS) 

Between groups 1a −  GROUPS GROUPSMS =SS / ( 1)a − 2 2 2
SUBJ GROUPSn bnσ σ κ+ +

Between subjects ( )1a b −  SUBJ SUBJMS =SS / ( 1)a b −  2 2
SUBJnσ σ+  

Within ( 1)ab n −  MS =SS / [ ( 1)]w w ab n −  2σ  

Explanation of symbols. SS: sums of squares; MS, E(MS): mean squares, expected mean 

squares; a: number of groups; b: number of subjects per group; n: number of acquisitions per 

subject; 2
GROUPSκ  variation due to group effect (fixed); 2

SUBJσ : subject-to-subjects variance 

(random); 2σ : residual error variance (acquisition-to-acquisition variance). 
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Table 2. 

Source of 
variation 

Degrees of 
freedom MS E(MS) 

Between 
subjects 1a −  SUBJ SUBJMS =SS / ( 1)a −  2 2

SUBJbnσ σ+  

Between 
treatments 
within subjects 

1b −  TREAT TREATMS =SS / ( 1)b −  2 2 2
SUBJ TREAT TREATn anσ σ κ×+ +

Interaction ( 1)( 1)a b− −  SUBJ TREAT

SUBJ TREAT

MS =
   =SS / [( 1)( 1)]a b

×

× − −
2 2

SUBJ TREATnσ σ ×+  

Within ( 1)ab n −  MS =SS / [ ( 1)]w w ab n −  2σ  

Explanation of symbols. SS: sums of squares; MS, E(MS): mean squares, expected mean 

squares; a: number of subjects; b: number of treatments, or levels, in the experimental factor 

(task); n: number of acquisitions per treatment in each subject; 2
SUBJσ : subject-to-subject 

variance (random); 2
TREATκ : variation due to treatments within-subjects (fixed); 2

SUBJ TREATσ × : 

subjects × treatment interaction (random); 2σ : residual error variance (acquisition-to-

acquisition variance). 
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Figure legends 

Figure 1. Thresholded t maps from models including global perfusion as covariate. A: Regression of rest 

perfusion values on working memory capacity scores, measured by the OSPAN test (Engle et al. 1999) in a 

sample of N=146. B: t maps in perfusion differences according to the serotonin transporter promoter genotype; 

the reduction in perfusion shown here affects carriers of the short ‘risk’ allele (sample size N=183). C: reduction 

in perfusion in individual with higher perfusion scores at the ERQ scale (Gross and John 2003), in a sample of 

N=29. D: the second principal component of rest perfusion data shows dissociation in perfusion values between 

the posterior and the anterolateral part of the brain, roughly corresponding to the areas where the t maps show a 

large cluster. All slices were taken at z = −10, Montreal Neurological Institute coordinates. 

Figure 2. Principal component analysis of rest perfusion data. First (A) and second (B) correlation components, 

computed from the whole sample of 295 average rest perfusion images. The top and bottom parts of the brain 

were removed to avoid differences in coverage to affect the estimate of the main components. The scale and sign 

of these images are arbitrary. The position of the slice is given in Montreal Neurological Institute coordinates. 

Figure 3. Overthreshold rates. A, B: count rates (in percent) of voxels included in clusters selected by an extent 

of 200 voxels and an uncorrected significance value p = 0.001 from 8000 two-sample t tests on randomly 

selected groups of 12 subjects each. In B, the count was repeated after including the global perfusion signal as a 

covariate (as in the analyses of Figure 1). C: the same statistic, after correcting for local anisotropy. D: count 

rates in artificial images randomly generated according to the Gaussian random field distribution. To obtain 

approximately comparable count rates, the artificial images were thresholded at p = 0.005, cluster size 50 voxels. 
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Figure 4. Observed and fitted overthreshold rates. Box plots of observed rates (marked with ‘Obs’ on the x axis) 

and net rates of individual components (#1 to #4 on the x axis) contributing to the fitted probabilities of reaching 

the cluster-defining threshold. The data contributing to the plots are those of all voxels in a volume; circles are 

outlier voxels where the cluster-defining threshold is reached more often. The first box on the left in each plot (in 

blue) contains the observed count rates across the volume, in per thousand. Because the uncorrected threshold 

was p = 0.001, unity on the x axis corresponds to the expected uncorrected overthreshold rate of 10/00, if clusters 

had not been filtered by size. All remaining boxes in the plot (in black) summarize the net count rate contributed 

by each of the four components in the logistic fit, i.e. the extent to which each component can predict the 

occurrence of overthreshold voxels. The horizontal line at the centre of the boxes is the median net fitted rate due 

to the component over the whole volume, and the spread reflects its variation from voxel to voxel. From left to 

right, the plots refer to clusters for increased signal (also shown in Figure 3A), to ranked data, to clusters 

computed with RESEL correction, and to artificial data following the Gaussian random field distribution (also 

shown in Figure 3D). The artificial data were obtained at the lower cluster-defining threshold p = 0.005 and 

cluster size 50 voxels. 

Figure 5. Influence of cluster extent threshold on observed and fitted overthreshold rates. Plot of observed and 

net fitted count rates, computed for parametric maps in which clusters were filtered by progressively larger 

extent size (from left to right, starting with no cluster size filter). One can see that increasing the cluster size 

filter leads to progressively larger influence of the spatial components in count rates. 

Figure 6. Overthreshold rates of cluster peaks. A: RESEL density map, showing decreased local smoothness in 

white matter. B: count rates (per ten thousand) of cluster peaks computed from 80 000 t test. Unlike cluster data, 

the spatial distribution of these peaks shows an association with the RESEL density map. 

Figure 7. Influence of acquisition-to-acquisition covariance on overthreshold rates. A: plots of the fractional 

contributions of acquisition-to-acquisition (in green) and subject-to-subject (in blue) to the spatial covariance of 

a parametric are plotted for values of variance ratios representative of gray and white matter. One can see that 

the contribution of acquisition-to-acquisition variation decreases with increasing numbers of acquisitions. 

Representative maps of these variance ratios for rest perfusion data acquired for 8 min (60 acquisitions) are 

shown in part B. In part C, bottom, the first component of acquisition-to-acquisition variance, showing the most 

important patterns that may be expected from this random effect. 
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